9 research outputs found

    Particulate Matter Exposure Exacerbates High Glucose-Induced Cardiomyocyte Dysfunction through ROS Generation

    Get PDF
    Diabetes mellitus and fine particulate matter from diesel exhaust (DEP) are both important contributors to the development of cardiovascular disease (CVD). Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter) can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS) generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml), and/or high glucose (HG, 25.5 mM). Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS), time-to-90% shortening (TPS90), time-to-90% relengthening (TR90) and maximal velocities of shortening/relengthening (±dL/dt), using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine) completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated cardiomyocytes exposed to HG-containing media, which is potentially mediated by various ROS generation pathways

    Oxidant and Redox Signaling in Vascular Oxygen Sensing: Implications for Systemic and Pulmonary Hypertension

    No full text
    It has been well known for >100 years that systemic blood vessels dilate in response to decreases in oxygen tension (hypoxia; low Po2), and this response appears to be critical to supply blood to the stressed organ. Conversely, pulmonary vessels constrict to a decrease in alveolar Po2 to maintain a balance in the ventilation-to-perfusion ratio. Currently, although little question exists that the Po2 affects vascular reactivity and vascular smooth muscle cells (VSMCs) act as oxygen sensors, the molecular mechanisms involved in modulating the vascular reactivity are still not clearly understood. Many laboratories, including ours, have suggested that the intracellular calcium concentration ([Ca2+ ]i), which regulates vasomotor function, is controlled by free radicals and redox signaling, including NAD(P)H and glutathione (GSH) redox. In this review article, therefore, we discuss the implications of redox and oxidant alterations seen in pulmonary and systemic hypertension, and how key targets that control [Ca2+ ]i, such as ion channels, Ca2+ release from internal stores and uptake by the sarcoplasmic reticulum, and the Ca2+ sensitivity to the myofilaments, are regulated by changes in intracellular redox and oxidants associated with vascular Po2 sensing in physiologic or pathophysiologic conditions. Antioxid. Redox Signal. 10, 1137–1152

    Adventitia-derived hydrogen peroxide impairs relaxation of the rat carotid artery via smooth muscle cell p38 mitogen-activated protein kinase.

    No full text
    The role of adventitia-derived reactive oxygen species (ROS) in vascular disease and impaired vascular relaxation is not clear. Based on robust adventitial ROS generation and effects on MAPK involvement in vascular dysfunction, we hypothesized that adventitia-derived ROS hydrogen peroxide (H(2)O(2)) impairs vascular relaxation through activation of medial smooth muscle p38 MAPK. By using a novel in vivo model, the adventitial surface of rat carotid arteries was bathed in situ for 90 min with vehicle, angiotensin II (AngII; 500 nM), AngII+H(2)O(2)-scavenger catalase (3,000 U/ml), AngII+p38 MAPK inhibitor SB203580 (10 μM), or AngII+superoxide dismutase (SOD; 150 U/ml). After these in vivo treatments, ex vivo tone measurements on isolated vessels revealed that periadventitial application of AngII impaired both acetylcholine-induced (endothelium-dependent) and sodium nitroprusside-induced (endothelium-independent) relaxations. In vivo coincubation with catalase or SB203580 significantly improved, but SOD exacerbated AngII-induced impairment of in vitro endothelium-dependent and -independent vascular relaxations. Western blots of vascular media, separated from the adventitia, demonstrated increased medial p38 MAPK activation and decreased medial phosphatase SHP-2 activity in AngII-treated vessels. These effects were reversed by in vivo periadventitial addition of catalase. These findings provide the first evidence that adventitia-derived H(2)O(2) participates in vascular dysfunction through p38 MAPK activation and SHP-2 inhibition

    Hemodynamic Forces, Vascular Oxidative Stress, and Regulation of BMP-2/4 Expression

    No full text
    Changes in the hemodynamic environment (e.g., hypertension, disturbed-flow conditions) are known to promote atherogenesis by inducing proinflammatory phenotypic alterations in endothelial and smooth muscle cells; however, the mechanisms underlying mechanosensitive induction of inflammatory gene expression are not completely understood. Bone morphogenetic protein-2 and -4 (BMP-2/4) are TGF-β superfamily cytokines that are expressed by both endothelial and smooth muscle cells and regulate a number of cellular processes involved in atherogenesis, including vascular calcification and endothelial activation. This review considers how hemodynamic forces regulate BMP-2/4 expression and explores the role of mechanosensitive generation of reactive oxygen species by NAD(P)H oxidases in the control of BMP signaling. Antioxid. Redox Signal. 11, 1683–1697

    Reactive Oxygen Species as Potential Mediators of Obesity-Related Cardiovascular Complications

    No full text

    Reductive stress in striated muscle cells

    No full text

    NADPH oxidase in brain injury and neurodegenerative disorders

    No full text
    corecore