40 research outputs found

    Evaluation of multi-exponential curve fitting analysis of oxygen-quenched phosphorescence decay traces for recovering microvascular oxygen tension histograms

    Get PDF
    Although it is generally accepted that oxygen-quenched phosphorescence decay traces can be analyzed using the exponential series method (ESM), its application until now has been limited to a few (patho)physiological studies, probably because the reliability of the recovered oxygen tension (pO2) histograms has never been extensively evaluated and lacks documentation. The aim of this study was, therefore, to evaluate the use of the ESM to adequately determine pO2 histograms from phosphorescence decay traces. For this purpose we simulated decay traces corresponding to uni- and bimodal pO2 distributions and recovered the pO2 histograms at different signal-to-noise ratios (SNRs). Ultimately, we recovered microvascular pO2 histograms measured in the rat kidney in a model of endotoxemic shock and fluid resuscitation and showed that the mean microvascular oxygen tension, 〈pO2〉, decreased after induction of endotoxemia and that after 2 h of fluid resuscitation, 〈pO2〉 remained low, but the hypoxic peak that had arisen during endotoxemia was reduced. This finding illustrates the importance of recovering pO2 histograms under (patho)physiological conditions. In conclusion, this study has characterized how noise affects the recovery of pO2 histograms using the ESM and documented the reliability of the ESM for recovering both low- and high-pO2 distributions for SNRs typically found in experiments. This study might therefore serve as a frame of reference for investigations focused on oxygen (re)distribution during health and disease and encourage researchers to (re-)analyze data obtained in (earlier) studies possibly revealing new insights into complex disease states and treatment strategies

    Quantitative assessment of renal perfusion and oxygenation by invasive probes: basic concepts

    Get PDF
    Renal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we describe basic principles of methodology to quantify renal hemodynamics and tissue oxygenation by means of invasive probes in experimental animals. Advantages and disadvantages of the various methods are discussed in the context of the heterogeneity of renal tissue perfusion and oxygenation.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by a separate chapter describing the experimental procedure and data analysis

    Angiotensin II facilitates autoregulation in the perfused mouse kidney: An optimized in vitro model for assessment of renal vascular and tubular function

    No full text
    Background and Aims: We have optimized the isolated perfused mouse kidney (IPMK) model for studying renal vascular and tubular function in vitro using 24-28 g C57BL6J mice; the wild type controls for many transgenic mice. Methods and Results: Buffer composition was optimized for bovine serum albumin concentration (BSA). The effect of adding erythrocytes on renal function and morphology was assessed. Autoregulation was investigated during stepped increases in perfusion pressure. Perfusion for 60 min at 90-110 mmHg with Krebs bicarbonate buffer containing 5.5% BSA, and amino acids produced functional parameters within the in vivo range. Erythrocytes increased renal vascular resistance (3.8 +/- 0.2 vs 2.4 +/- 0.1 mL/min.mmHg, P < 0.05), enhanced sodium reabsorption (FENa = 0.3 +/- 0.08 vs 1.5 +/- 0.7%, P < 0.05), produced equivalent glomerular filtration rates (GFR; 364 +/- 38 vs 400 +/- 9 muL/min per gkw) and reduced distal tubular cell injury in the inner stripe (5.8 +/- 1.7 vs 23.7 +/- 3.1%, P < 0.001) compared to cell free perfusion. The IPMK was responsive to vasoconstrictor (angiotensin II, EC50 100 pM) and vasodilator (methacholine, EC50 75 nM) mediators and showed partial autoregulation of perfusate flow under control conditions over 65-85 mmHg; autoregulatory index (ARI) of 0.66 +/- 0.11. Angiotensin II (100 pM) extended this range (to 65-120 mmHg) and enhanced efficiency (ARI 0.21 +/- 0.02, P < 0.05). Angiotensin II facilitation was antagonized by methacholine (ARI 0.76 +/- 0.08) and papaverine (ARI 0.91 +/- 0.13). Conclusion: The IPMK model is useful for studying renal physiology and pathophysiology without systemic neurohormonal influences
    corecore