9 research outputs found
Recommended from our members
An update on vitamin B12-related gene polymorphisms and B12 status.
Vitamin B12 is an essential micronutrient in humans needed for health maintenance. Deficiency of vitamin B12 has been linked to dietary, environmental and genetic factors. Evidence for the genetic basis of vitamin B12 status is poorly understood. However, advancements in genomic techniques have increased the knowledge-base of the genetics of vitamin B12 status. Based on the candidate gene and genome-wide association (GWA) studies, associations between genetic loci in several genes involved in vitamin B12 metabolism have been identified. The objective of this literature review was to identify and discuss reports of associations between single-nucleotide polymorphisms (SNPs) in vitamin B12 pathway genes and their influence on the circulating levels of vitamin B12. Relevant articles were obtained through a literature search on PubMed through to May 2017. An article was included if it examined an association of a SNP with serum or plasma vitamin B12 concentration. Beta coefficients and odds ratios were used to describe the strength of an association, and a < 0.05 was considered as statistically significant. Two reviewers independently evaluated the eligibility for the inclusion criteria and extracted the data. From 23 studies which fulfilled the selection criteria, 16 studies identified SNPs that showed statistically significant associations with vitamin B12 concentrations. Fifty-nine vitamin B12-related gene polymorphisms associated with vitamin B12 status were identified in total, from the following populations: African American, Brazilian, Canadian, Chinese, Danish, English, European ancestry, Icelandic, Indian, Italian, Latino, Northern Irish, Portuguese and residents of the USA. Overall, the data analyzed suggests that ethnic-specific associations are involved in the genetic determination of vitamin B12 concentrations. However, despite recent success in genetic studies, the majority of identified genes that could explain variation in vitamin B12 concentrations were from Caucasian populations. Further research utilizing larger sample sizes of non-Caucasian populations is necessary in order to better understand these ethnic-specific associations
Accumulation of wear and tear in archival and library collections. Part II: an epidemiological study
Oxidative degradation of non-recycled and recycled paper
AbstractThe degradation of paper-based materials involves several and complex mechanisms, such as hydrolysis and oxidation. The behaviour of different types of pulps can be very variable. In this study, the difference upon oxidation of contemporary non-recycled and recycled papers, which now constitute a considerable fibre source, is investigated. A 0.015 M potassium periodate solution is used to oxidise five types of paper, two non-recycled and three recycled, for 0.5, 1, 2 and 4 h. The effects of such oxidation treatments are evaluated in terms of carbonyl content and degree of polymerisation (DP). A modified procedure of the Szabolcs's method and viscometry are used to measure the carbonyl content and DP, respectively. The carbonyl groups are found to increase more rapidly in the recycled papers than in the non-recycled ones. On the contrary, oxidation causes a larger decrease of the DP values in the non-recycled papers, the paper made of pure cellulose being the most sensitive in terms of depolymerisation. The DP values measured for pure cellulose paper are in line with previously reported data. Moreover, in accordance with the Ekenstam equation, the plots of the reciprocal of DP as a function of oxidation time show good linear correlations for all types of paper investigated. Pseudo rate constants are thus calculated from the slopes of these plots, those of the non-recycled papers being found to be higher than those of the recycled papers.
Graphic abstrac