913 research outputs found

    The mystery of relationship of mechanics and field in the many-body quantum world

    Full text link
    We have revealed three fatal errors incurred from a blind transferring of quantum field methods into the quantum mechanics. This had tragic consequences because it produced crippled model Hamiltonians, unfortunately considered sufficient for a description of solids including superconductors. From there, of course, Fr\"ohlich derived wrong effective Hamiltonian, from which incorrect BCS theory arose. 1) Mechanical and field patterns cannot be mixed. Instead of field methods applied to the mechanical Born-Oppenheimer approximation we have entirely to avoid it and construct an independent and standalone field pattern. This leads to a new form of the Bohr's complementarity on the level of composite systems. 2) We have correctly to deal with the center of gravity, which is under the field pattern "materialized" in the form of new quasipartiles - rotons and translons. This leads to a new type of relativity of internal and external degrees of freedom and one-particle way of bypassing degeneracies (gap formation). 3) The possible symmetry cannot be apriori loaded but has to be aposteriori obtained as a solution of field equations, formulated in a general form without translational or any other symmetry. This leads to an utterly revised view of symmetry breaking in non-adiabatic systems, namely Jahn-Teller effect and superconductivity. These two phenomena are synonyms and share a unique symmetry breaking.Comment: 24 pages, 9 sections; remake of abstract, introduction and conclusion; more physics, less philosoph

    Electronic Properties of Boron and Nitrogen doped graphene: A first principles study

    Full text link
    Effect of doping of graphene either by Boron (B), Nitrogen (N) or co-doped by B and N is studied using density functional theory. Our extensive band structure and density of states calculations indicate that upon doping by N (electron doping), the Dirac point in the graphene band structure shifts below the Fermi level and an energy gap appears at the high symmetric K-point. On the other hand, by B (hole doping), the Dirac point shifts above the Fermi level and a gap appears. Upon co-doping of graphene by B and N, the energy gap between valence and conduction bands appears at Fermi level and the system behaves as narrow gap semiconductor. Obtained results are found to be in well agreement with available experimental findings.Comment: 11 pages, 4 figures, 1 table, submitted to J. Nanopart. Re

    Centre-of-mass separation in quantum mechanics: Implications for the many-body treatment in quantum chemistry and solid state physics

    Full text link
    We address the question to what extent the centre-of-mass (COM) separation can change our view of the many-body problem in quantum chemistry and solid state physics. It was shown that the many-body treatment based on the electron-vibrational Hamiltonian is fundamentally inconsistent with the Born-Handy ansatz so that such a treatment can never respect the COM problem. Born-Oppenheimer (B-O) approximation reveals some secret: it is a limit case where the degrees of freedom can be treated in a classical way. Beyond the B-O approximation they are inseparable in principle. The unique covariant description of all equations with respect to individual degrees of freedom leads to new types of interaction: besides the known vibronic (electron-phonon) one the rotonic (electron-roton) and translonic (electron-translon) interactions arise. We have proved that due to the COM problem only the hypervibrations (hyperphonons, i.e. phonons + rotons + translons) have true physical meaning in molecules and crystals; nevertheless, the use of pure vibrations (phonons) is justified only in the adiabatic systems. This fact calls for the total revision of our contemporary knowledge of all non-adiabatic effects, especially the Jahn-Teller effect and superconductivity. The vibronic coupling is responsible only for removing of electron (quasi)degeneracies but for the explanation of symmetry breaking and forming of structure the rotonic and translonic coupling is necessary.Comment: 39 pages, 11 sections, 3 appendice

    Tracing magnetism and pairing in FeTe-based systems

    Full text link
    In order to examine the interplay between magnetism and superconductivity, we monitor the non- superconducting chalcogenide FeTe and follow its transitions under insertion of oxygen, doping with Se and vacancies of Fe using spin-polarized band structure methods (LSDA with GGA) starting from the collinear and bicollinear magnetic arrangements. We use a supercell of Fe8Te8 as our starting point so that it can capture local changes in magnetic moments. The calculated values of magnetic moments agree well with available experimental data while oxygen insertions lead to significant changes in the bicollinear or collinear magnetic moments. The total energies of these systems indicate that the collinear-derived structure is the more favorable one prior to a possible superconducting transition. Using a 8-site Betts-cluster-based lattice and the Hubbard model, we show why this structure favors electron or hole pairing and provides clues to a common understanding of charge and spin pairing in the cuprates, pnictides and chalcogenides

    Electronic Structures of S-Doped Capped C-SWNT from First Principles Study

    Get PDF
    The semiconducting single-walled carbon nanotube (C-SWNT) has been synthesized by S-doping, and they have extensive potential application in electronic devices. We investigated the electronic structures of S-doped capped (5, 5) C-SWNT with different doping position using first principles calculations. It is found that the electronic structures influence strongly on the workfunction without and with external electric field. It is considered that the extended wave functions at the sidewall of the tube favor for the emission properties. With the S-doping into the C-SWNT, the HOMO and LUMO charges distribution is mainly more localized at the sidewall of the tube and the presence of the unsaturated dangling bond, which are believed to enhance workfunction. When external electric field is applied, the coupled states with mixture of localized and extended states are presented at the cap, which provide the lower workfunction. In addition, the wave functions close to the cap have flowed to the cap as coupled states and to the sidewall of the tube mainly as extended states, which results in the larger workfunction. It is concluded that the S-doped C-SWNT is not incentive to be applied in field emitter fabrication. The results are also helpful to understand and interpret the application in other electronic devices

    Carrier-mediated magnetoelectricity in complex oxide heterostructures

    Full text link
    While tremendous success has been achieved to date in creating both single phase and composite magnetoelectric materials, the quintessential electric-field control of magnetism remains elusive. In this work, we demonstrate a linear magnetoelectric effect which arises from a novel carrier-mediated mechanism, and is a universal feature of the interface between a dielectric and a spin-polarized metal. Using first-principles density functional calculations, we illustrate this effect at the SrRuO3_3/SrTiO3_3 interface and describe its origin. To formally quantify the magnetic response of such an interface to an applied electric field, we introduce and define the concept of spin capacitance. In addition to its magnetoelectric and spin capacitive behavior, the interface displays a spatial coexistence of magnetism and dielectric polarization suggesting a route to a new type of interfacial multiferroic

    Review of biorthogonal coupled cluster representations for electronic excitation

    Full text link
    Single reference coupled-cluster (CC) methods for electronic excitation are based on a biorthogonal representation (bCC) of the (shifted) Hamiltonian in terms of excited CC states, also referred to as correlated excited (CE) states, and an associated set of states biorthogonal to the CE states, the latter being essentially configuration interaction (CI) configurations. The bCC representation generates a non-hermitian secular matrix, the eigenvalues representing excitation energies, while the corresponding spectral intensities are to be derived from both the left and right eigenvectors. Using the perspective of the bCC representation, a systematic and comprehensive analysis of the excited-state CC methods is given, extending and generalizing previous such studies. Here, the essential topics are the truncation error characteristics and the separability properties, the latter being crucial for designing size-consistent approximation schemes. Based on the general order relations for the bCC secular matrix and the (left and right) eigenvector matrices, formulas for the perturbation-theoretical (PT) order of the truncation errors (TEO) are derived for energies, transition moments, and property matrix elements of arbitrary excitation classes and truncation levels. In the analysis of the separability properties of the transition moments, the decisive role of the so-called dual ground state is revealed. Due to the use of CE states the bCC approach can be compared to so-called intermediate state representation (ISR) methods based exclusively on suitably orthonormalized CE states. As the present analysis shows, the bCC approach has decisive advantages over the conventional CI treatment, but also distinctly weaker TEO and separability properties in comparison with a full (and hermitian) ISR method

    Pressure dependent electronic properties of MgO polymorphs: A first-principles study of Compton profiles and autocorrelation functions

    Full text link
    The first-principles periodic linear combination of atomic orbitals method within the framework of density functional theory implemented in the CRYSTAL06 code has been applied to explore effect of pressure on the Compton profiles and autocorrelation functions of MgO. Calculations are performed for the B1, B2, B3, B4, B8_1 and h-MgO polymorphs of MgO to compute lattice constants and bulk moduli. The isothermal enthalpy calculations predict that B4 to B8_1, h-MgO to B8_1, B3 to B2, B4 to B2 and h-MgO to B2 transitions take place at 2, 9, 37, 42 and 64 GPa respectively. The high pressure transitions B8_1 to B2 and B1 to B2 are found to occur at 340 and 410 GPa respectively. The pressure dependent changes are observed largely in the valence electrons Compton profiles whereas core profiles are almost independent of the pressure in all MgO polymorphs. Increase in pressure results in broadening of the valence Compton profiles. The principal maxima in the second derivative of Compton profiles shifts towards high momentum side in all structures. Reorganization of momentum density in the B1 to B2 structural phase transition is seen in the first and second derivatives before and after the transition pressure. Features of the autocorrelation functions shift towards lower r side with increment in pressure.Comment: 19 pages, 8 figures, accepted for publication in Journal of Materials Scienc
    corecore