226 research outputs found
Recommended from our members
Hydrocode modeling of the Sierra Madera impact structure
We present the first hydrocode simulations of the formation of the Sierra Madera structure (west Texas, USA), which was caused by an impact into a thick sedimentary target sequence. We modeled Sierra Madera using the iSALE hydrocode, and here we present two best-fit models: 1) a crater with a rim (final crater) diameter of ~12 km, in agreement with previous authors interpretations of the original structure, and 2) a crater ~16 km in diameter with increased postimpact erosion. Both models fit some of the geologic observational data, but discrepancies with estimates of peak shock pressure, extent of deformation, and stratigraphic displacement remain. This study suggests that Sierra Madera may be a larger crater than previously reported and illustrates some of the challenges in simulating impact deformation of sedimentary lithologies. As many terrestrial craters possess some amount of sedimentary rocks in the target sequence, numerical models of impacts into sedimentary targets are essential to our understanding of target rock deformation and the mechanics of crater formation.The Meteoritics & Planetary Science archives are made available by the Meteoritical Society and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202
Controls on the formation of lunar multiring basins
Multiring basins dominate the crustal structure, tectonics, and stratigraphy of the Moon. Understanding how these basins form is crucial for understanding the evolution of ancient planetary crusts. To understand how preimpact thermal structure and crustal thickness affect the formation of multiring basins, we simulate the formation of lunar basins and their rings under a range of target and impactor conditions. We find that ring locations, spacing, and offsets are sensitive to lunar thermal gradient (strength of the lithosphere), temperature of the deep lunar mantle (strength of the asthenosphere), and preimpact crustal thickness. We also explore the effect of impactor size on the formation of basin rings and reproduce the observed transition from peak‐ring basins to multiring basins and reproduced many observed aspects of ring spacing and location. Our results are in broad agreement with the ring tectonic theory for the formation of basin rings and also suggest that ring tectonic theory applies to the rim scarp of smaller peak‐ring basins
Nucleon structure functions and light front dynamics
We present a quark-parton model to describe polarized and unpolarized nucleon structure functions. The twist-two matrix elements for the QCD evolution analysis of lepton-hadron scattering are calculated within a light-front covariant quark model. The relativistic effects in the three-body wave function are discussed for both the polarized and unpolarized cases. Predictions are given for the polarized gluon distributions as will be seen in future experiments
Unified framework for generalized and transverse-momentum dependent parton distributions within a 3Q light-cone picture of the nucleon
We present a systematic study of generalized transverse-momentum dependent
parton distributions (GTMDs). By taking specific limits or projections, these
GTMDs yield various transverse-momentum dependent and generalized parton
distributions, thus providing a unified framework to simultaneously model
different observables. We present such simultaneous modeling by considering a
light-cone wave function overlap representation of the GTMDs. We construct the
different quark-quark correlation functions from the 3-quark Fock components
within both the light-front constituent quark model as well as within the
chiral quark-soliton model. We provide a comparison with available data and
make predictions for different observables.Comment: version to appear in JHE
Lunar exploration: opening a window into the history and evolution of the inner Solar System
The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date, and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system, and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap
Earliest rock fabric formed in the Solar System preserved in a chondrule rim
Rock fabrics – the preferred orientation of grains – provide a window into the history of rock formation, deformation and compaction. Chondritic meteorites are among the oldest materials in the Solar System1 and their fabrics should record a range of processes occurring in the nebula and in asteroids, but due to abundant fine-grained material these samples have largely resisted traditional in situ fabric analysis. Here we use high resolution electron backscatter diffraction to map the orientation of sub-micrometre grains in the Allende CV carbonaceous chondrite: the matrix material that is interstitial to the mm-sized spherical chondrules that give chondrites their name, and fine-grained rims which surround those chondrules. Although Allende matrix exhibits a bulk uniaxial fabric relating to a significant compressive event in the parent asteroid, we find that fine-grained rims preserve a spherically symmetric fabric centred on the chondrule. We define a method that quantitatively relates fabric intensity to net compression, and reconstruct an initial porosity for the rims of 70-80% - a value very close to model estimates for the earliest uncompacted aggregates2,3. We conclude that the chondrule rim textures formed in a nebula setting and may therefore be the first rock fabric to have formed in the Solar System
Light-Cone Quantization and Hadron Structure
In this talk, I review the use of the light-cone Fock expansion as a
tractable and consistent description of relativistic many-body systems and
bound states in quantum field theory and as a frame-independent representation
of the physics of the QCD parton model. Nonperturbative methods for computing
the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock
state representation of hadrons also describes quantum fluctuations containing
intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden
color". Fock state components of hadrons with small transverse size, such as
those which dominate hard exclusive reactions, have small color dipole moments
and thus diminished hadronic interactions; i.e., "color transparency". The use
of light-cone Fock methods to compute loop amplitudes is illustrated by the
example of the electron anomalous moment in QED. In other applications, such as
the computation of the axial, magnetic, and quadrupole moments of light nuclei,
the QCD relativistic Fock state description provides new insights which go well
beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to
[email protected]
A pre-Caloris synchronous rotation for Mercury
The planet Mercury is locked in a spin-orbit resonance where it rotates three
times about its spin axis for every two orbits about the Sun. The current
explanation for this unique state assumes that the initial rotation of this
planet was prograde and rapid, and that tidal torques decelerated the planetary
spin to this resonance. When core-mantle boundary friction is accounted for,
capture into the 3/2 resonance occurs with a 26% probability, but the most
probable outcome is capture into one of the higher-order resonances. Here we
show that if the initial rotation of Mercury were retrograde, this planet would
be captured into synchronous rotation with a 68% probability. Strong spatial
variations of the impact cratering rate would have existed at this time, and
these are shown to be consistent with the distribution of pre-Calorian impact
basins observed by Mariner 10 and MESSENGER. Escape from this highly stable
resonance is made possible by the momentum imparted by large basin-forming
impact events, and capture into the 3/2 resonance occurs subsequently under
favourable conditions.Comment: Nature Geosci., 201
- …