226 research outputs found

    Controls on the formation of lunar multiring basins

    Get PDF
    Multiring basins dominate the crustal structure, tectonics, and stratigraphy of the Moon. Understanding how these basins form is crucial for understanding the evolution of ancient planetary crusts. To understand how preimpact thermal structure and crustal thickness affect the formation of multiring basins, we simulate the formation of lunar basins and their rings under a range of target and impactor conditions. We find that ring locations, spacing, and offsets are sensitive to lunar thermal gradient (strength of the lithosphere), temperature of the deep lunar mantle (strength of the asthenosphere), and preimpact crustal thickness. We also explore the effect of impactor size on the formation of basin rings and reproduce the observed transition from peak‐ring basins to multiring basins and reproduced many observed aspects of ring spacing and location. Our results are in broad agreement with the ring tectonic theory for the formation of basin rings and also suggest that ring tectonic theory applies to the rim scarp of smaller peak‐ring basins

    Nucleon structure functions and light front dynamics

    Get PDF
    We present a quark-parton model to describe polarized and unpolarized nucleon structure functions. The twist-two matrix elements for the QCD evolution analysis of lepton-hadron scattering are calculated within a light-front covariant quark model. The relativistic effects in the three-body wave function are discussed for both the polarized and unpolarized cases. Predictions are given for the polarized gluon distributions as will be seen in future experiments

    Unified framework for generalized and transverse-momentum dependent parton distributions within a 3Q light-cone picture of the nucleon

    Full text link
    We present a systematic study of generalized transverse-momentum dependent parton distributions (GTMDs). By taking specific limits or projections, these GTMDs yield various transverse-momentum dependent and generalized parton distributions, thus providing a unified framework to simultaneously model different observables. We present such simultaneous modeling by considering a light-cone wave function overlap representation of the GTMDs. We construct the different quark-quark correlation functions from the 3-quark Fock components within both the light-front constituent quark model as well as within the chiral quark-soliton model. We provide a comparison with available data and make predictions for different observables.Comment: version to appear in JHE

    Lunar exploration: opening a window into the history and evolution of the inner Solar System

    Get PDF
    The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date, and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system, and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap

    Earliest rock fabric formed in the Solar System preserved in a chondrule rim

    Get PDF
    Rock fabrics – the preferred orientation of grains – provide a window into the history of rock formation, deformation and compaction. Chondritic meteorites are among the oldest materials in the Solar System1 and their fabrics should record a range of processes occurring in the nebula and in asteroids, but due to abundant fine-grained material these samples have largely resisted traditional in situ fabric analysis. Here we use high resolution electron backscatter diffraction to map the orientation of sub-micrometre grains in the Allende CV carbonaceous chondrite: the matrix material that is interstitial to the mm-sized spherical chondrules that give chondrites their name, and fine-grained rims which surround those chondrules. Although Allende matrix exhibits a bulk uniaxial fabric relating to a significant compressive event in the parent asteroid, we find that fine-grained rims preserve a spherically symmetric fabric centred on the chondrule. We define a method that quantitatively relates fabric intensity to net compression, and reconstruct an initial porosity for the rims of 70-80% - a value very close to model estimates for the earliest uncompacted aggregates2,3. We conclude that the chondrule rim textures formed in a nebula setting and may therefore be the first rock fabric to have formed in the Solar System

    Light-Cone Quantization and Hadron Structure

    Get PDF
    In this talk, I review the use of the light-cone Fock expansion as a tractable and consistent description of relativistic many-body systems and bound states in quantum field theory and as a frame-independent representation of the physics of the QCD parton model. Nonperturbative methods for computing the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock state representation of hadrons also describes quantum fluctuations containing intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden color". Fock state components of hadrons with small transverse size, such as those which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions; i.e., "color transparency". The use of light-cone Fock methods to compute loop amplitudes is illustrated by the example of the electron anomalous moment in QED. In other applications, such as the computation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to [email protected]

    A pre-Caloris synchronous rotation for Mercury

    Full text link
    The planet Mercury is locked in a spin-orbit resonance where it rotates three times about its spin axis for every two orbits about the Sun. The current explanation for this unique state assumes that the initial rotation of this planet was prograde and rapid, and that tidal torques decelerated the planetary spin to this resonance. When core-mantle boundary friction is accounted for, capture into the 3/2 resonance occurs with a 26% probability, but the most probable outcome is capture into one of the higher-order resonances. Here we show that if the initial rotation of Mercury were retrograde, this planet would be captured into synchronous rotation with a 68% probability. Strong spatial variations of the impact cratering rate would have existed at this time, and these are shown to be consistent with the distribution of pre-Calorian impact basins observed by Mariner 10 and MESSENGER. Escape from this highly stable resonance is made possible by the momentum imparted by large basin-forming impact events, and capture into the 3/2 resonance occurs subsequently under favourable conditions.Comment: Nature Geosci., 201
    corecore