11 research outputs found

    Vegan diets : practical advice for athletes and exercisers.

    Get PDF
    With the growth of social media as a platform to share information, veganism is becoming more visible, and could be becoming more accepted in sports and in the health and fitness industry. However, to date, there appears to be a lack of literature that discusses how to manage vegan diets for athletic purposes. This article attempted to review literature in order to provide recommendations for how to construct a vegan diet for athletes and exercisers. While little data could be found in the sports nutrition literature specifically, it was revealed elsewhere that veganism creates challenges that need to be accounted for when designing a nutritious diet. This included the sufficiency of energy and protein; the adequacy of vitamin B12, iron, zinc, calcium, iodine and vitamin D; and the lack of the long-chain n-3 fatty acids EPA and DHA in most plant-based sources. However, via the strategic management of food and appropriate supplementation, it is the contention of this article that a nutritive vegan diet can be designed to achieve the dietary needs of most athletes satisfactorily. Further, it was suggested here that creatine and β-alanine supplementation might be of particular use to vegan athletes, owing to vegetarian diets promoting lower muscle creatine and lower muscle carnosine levels in consumers. Empirical research is needed to examine the effects of vegan diets in athletic populations however, especially if this movement grows in popularity, to ensure that the health and performance of athletic vegans is optimised in accordance with developments in sports nutrition knowledge

    Models of chronic obstructive pulmonary disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a major global health problem and is predicted to become the third most common cause of death by 2020. Apart from the important preventive steps of smoking cessation, there are no other specific treatments for COPD that are as effective in reversing the condition, and therefore there is a need to understand the pathophysiological mechanisms that could lead to new therapeutic strategies. The development of experimental models will help to dissect these mechanisms at the cellular and molecular level. COPD is a disease characterized by progressive airflow obstruction of the peripheral airways, associated with lung inflammation, emphysema and mucus hypersecretion. Different approaches to mimic COPD have been developed but are limited in comparison to models of allergic asthma. COPD models usually do not mimic the major features of human COPD and are commonly based on the induction of COPD-like lesions in the lungs and airways using noxious inhalants such as tobacco smoke, nitrogen dioxide, or sulfur dioxide. Depending on the duration and intensity of exposure, these noxious stimuli induce signs of chronic inflammation and airway remodelling. Emphysema can be achieved by combining such exposure with instillation of tissue-degrading enzymes. Other approaches are based on genetically-targeted mice which develop COPD-like lesions with emphysema, and such mice provide deep insights into pathophysiological mechanisms. Future approaches should aim to mimic irreversible airflow obstruction, associated with cough and sputum production, with the possibility of inducing exacerbations

    Intra-individual variation in resting metabolic rate during the menstrual cycle.

    No full text
    Little information exists on the extent of day-to-day intra-individual variation in resting metabolic rate (RMR) in women. The present study has investigated the intra-individual variation in RMR of women during the menstrual cycle. Nineteen women (naturally cycling non-pill users) were recruited to the study. Anthropometric and RMR measurements were taken at least three times per week for the duration of one complete menstrual cycle; measurements were taken for a second, consecutive cycle in eight of the nineteen subjects. RMR was measured by indirect calorimetry using a ventilated hood system under standardized conditions. The measurements made throughout each complete menstrual cycle were averaged and the levels of inter- and intra-individual variation in RMR were assessed by determining the CV (%). Mean RMR of the group was 5686 (sd 674) kJ/d; inter-individual variation in RMR was 11.8 %. There were wide differences in the intra-individual variation in RMR of women (CV range 1.7-10.4 %). The CV in ten subjects was small (2-4 %), while the CV in nine women was high (5-10 %), indicating a significant variation in RMR during the menstrual cycle in certain subjects. Using statistical models, it has been shown that there was a significant effect on RMR due to a subject-specific level of variability; this was the case even when accounting for a possible training effect. In conclusion, the findings from our present study show that RMR cannot be assumed to be 'stable' in all women. The implications of intra-individual variation in RMR and its impact on energy balance needs further research

    Brazilian recommendations of mechanical ventilation 2013. Part I

    No full text
    corecore