62 research outputs found

    Hidden Magnetism and Quantum Criticality in the Heavy Fermion Superconductor CeRhIn5

    Full text link
    With understood exceptions, conventional superconductivity does not coexist with long-range magnetic order[1]. In contrast, unconventional superconductivity develops near a boundary separating magnetically ordered and magnetically disordered phases[2,3]. A maximum in the superconducting transition temperature Tc develops where this boundary extrapolates to T=0 K, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity[4,5]. Invariably though, unconventional superconductivity hides the magnetic boundary when T < Tc, preventing proof of a magnetic quantum-critical point[5]. Here we report specific heat measurements of the pressure-tuned unconventional superconductor CeRhIn5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T->0 K magnetic field-pressure phase diagram of CeRhIn5 is well described with a theoretical model[6,7] developed to explain field-induced magnetism in the high-Tc cuprates but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in cuprate and heavy-electron systems, such as CeRhIn5.Comment: journal reference adde

    Human papillomavirus-mediated carcinogenesis and HPV-associated oral and oropharyngeal squamous cell carcinoma. Part 1: Human papillomavirus-mediated carcinogenesis

    Get PDF
    High-risk human papillomavirus (HPV) E6 and E7 oncoproteins are essential factors for HPV-induced carcinogenesis, and for the maintenance of the consequent neoplastic growth. Cellular transformation is achieved by complex interaction of these oncogenes with several cellular factors of cell cycle regulation including p53, Rb, cyclin-CDK complexes, p21 and p27. Both persistent infection with high-risk HPV genotypes and immune dysregulation are associated with increased risk of HPV-induced squamous cell carcinoma

    Up-regulation of expression and lack of 5' CpG island hypermethylation of p16 INK4a in HPV-positive cervical carcinomas

    Get PDF
    BACKGROUND: High risk type human papilloma viruses (HR-HPV) induce carcinomas of the uterine cervix by expressing viral oncogenes E6 and E7. Oncogene E7 of HR-HPV disrupts the pRb/E2F interaction, which negatively regulates the S phase entry. Expression of tumor suppressor p16(ink4a )drastically increases in majority of HR-HPV associated carcinomas due to removal of pRb repression. The p16(ink4a )overexpression is an indicator of an aberrant expression of viral oncogenes and may serve as a marker for early diagnostic of cervical cancer. On the other hand, in 25–57% of cervical carcinomas hypermethylation of the p16 INK4a promoter has been demonstrated using a methylation-specific PCR, MSP. To evaluate a potential usage of the p16 INK4a 5' CpG island hypermethylation as an indicator of tumor cell along with p16(ink4a )overexpression, we analyzed the methylation status of p16 INK4a in cervical carcinomas METHODS: Methylation status of p16 INK4a was analyzed by MSP and by bisulfite-modified DNA sequencing. The expression of p16(ink4a )was analyzed by RT-PCR and by immunohistochemical technique. RESULTS: The extensive methylation within p16 INK4a 5' CpG island was not detected either in 13 primary cervical carcinomas or in 5 cancer cell lines by bisulfite-modified DNA sequencing (including those that were positive by MSP in our hands). The number and distribution of rare partially methylated CpG sites did not differ considerably in tumors and adjacent normal tissues. The levels of the p16 INK4a mRNA were increased in carcinomas compared to the normal tissues independently of the number of partially methylated CpGs within 5'CpG island. The transcriptional activation of p16 INK4a was accompanied by p16(ink4a )cytoplasmic immunoreactivity in the majority of tumor cells and presence of a varied number of the p16 positive nuclei in different tumors. CONCLUSION: Hypermethylaion of the p16INK4a 5' CpG island is not a frequent event in HR-HPV-positive cervical carcinomas and cannot be an effective marker of cancer cells with up-regulated expression of p16(ink4a). Our data confirm other previous studies claiming specific p16INK4a up-regulation in the majority of cervical carcinomas at both the protein and mRNA levels. Cytoplasmic accumulation of p16(ink4a )is a feature of cervical carcinomas
    • …
    corecore