213 research outputs found
A close halo of large transparent grains around extreme red giant stars
Intermediate-mass stars end their lives by ejecting the bulk of their
envelope via a slow dense wind back into the interstellar medium, to form the
next generation of stars and planets. Stellar pulsations are thought to elevate
gas to an altitude cool enough for the condensation of dust, which is then
accelerated by radiation pressure from starlight, entraining the gas and
driving the wind. However accounting for the mass loss has been a problem due
to the difficulty in observing tenuous gas and dust tens of milliarcseconds
from the star, and there is accordingly no consensus on the way sufficient
momentum is transferred from the starlight to the outflow. Here, we present
spatially-resolved, multi-wavelength observations of circumstellar dust shells
of three stars on the asymptotic giant branch of the HR diagram. When imaged in
scattered light, dust shells were found at remarkably small radii (<~ 2 stellar
radii) and with unexpectedly large grains (~300 nm radius). This proximity to
the photosphere argues for dust species that are transparent to starlight and
therefore resistant to sublimation by the intense radiation field. While
transparency usually implies insufficient radiative pressure to drive a wind,
the radiation field can accelerate these large grains via photon scattering
rather than absorption - a plausible mass-loss mechanism for lower-amplitude
pulsating stars.Comment: 13 pages, 1 table, 6 figure
The Origins of Concentric Demyelination: Self-Organization in the Human Brain
Baló's concentric sclerosis is a rare atypical form of multiple sclerosis characterized by striking concentric demyelination patterns. We propose a robust mathematical model for Baló's sclerosis, sharing common molecular and cellular mechanisms with multiple sclerosis. A reconsideration of the analogies between Baló's sclerosis and the Liesegang periodic precipitation phenomenon led us to propose a chemotactic cellular model for this disease. Rings of demyelination appear as a result of self-organization processes, and closely mimic Baló lesions. According to our results, homogeneous and concentric demyelinations may be two different macroscopic outcomes of a single fundamental immune disorder. Furthermore, in chemotactic models, cellular aggressivity appears to play a central role in pattern formation
Antibody Responses to NY-ESO-1 in Primary Breast Cancer Identify a Subtype Target for Immunotherapy
The highly immunogenic human tumor antigen NY-ESO-1 (ESO) is a target of choice for anti-cancer immune therapy. In this study, we assessed spontaneous antibody (Ab) responses to ESO in a large cohort of patients with primary breast cancer (BC) and addressed the correlation between the presence of anti-ESO Ab, the expression of ESO in the tumors and their characteristics. We found detectable Ab responses to ESO in 1% of the patients. Tumors from patients with circulating Ab to ESO exhibited common characteristics, being mainly hormone receptor (HR)− invasive ductal carcinomas of high grade, including both HER2− and HER2+ tumors. In line with these results, we detected ESO expression in 20% of primary HR− BC, including both ESO Ab+ and Ab− patients, but not in HR+ BC. Interestingly, whereas expression levels in ESO+ BC were not significantly different between ESO Ab+ and Ab− patients, the former had, in average, significantly higher numbers of tumor-infiltrated lymph nodes, indicating that lymph node invasion may be required for the development of spontaneous anti-tumor immune responses. Thus, the presence of ESO Ab identifies a tumor subtype of HR− (HER2− or HER2+) primary BC with frequent ESO expression and, together with the assessment of antigen expression in the tumor, may be instrumental for the selection of patients for whom ESO-based immunotherapy may complement standard therapy
A Natural Combination Extract of Viscum album L. Containing Both Triterpene Acids and Lectins Is Highly Effective against AML In Vivo
Aqueous Viscum album L. extracts are widely used in complementary cancer
medicine. Hydrophobic triterpene acids also possess anti-cancer properties,
but due to their low solubility they do not occur in significant amounts in
aqueous extracts. Using cyclodextrins we solubilised mistletoe triterpenes
(mainly oleanolic acid) and investigated the effect of a mistletoe whole plant
extract on human acute myeloid leukaemia cells in vitro, ex vivo and in vivo.
Single Viscum album L. extracts containing only solubilised triterpene acids
(TT) or lectins (viscum) inhibited cell proliferation and induced apoptosis in
a dose-dependent manner in vitro and ex vivo. The combination of viscum and TT
extracts (viscumTT) enhanced the induction of apoptosis synergistically. The
experiments demonstrated that all three extracts are able to induce apoptosis
via caspase-8 and -9 dependent pathways with down-regulation of members of the
inhibitor of apoptosis and Bcl-2 families of proteins. Finally, the acute
myeloid leukaemia mouse model experiment confirmed the therapeutic
effectiveness of viscumTT-treatment resulting in significant tumour weight
reduction, comparable to the effect in cytarabine-treated mice. These results
suggest that the combination viscumTT may have a potential therapeutic value
for the treatment AML
Bone regeneration: current concepts and future directions
Bone regeneration is a complex, well-orchestrated physiological process of bone formation, which can be seen during normal fracture healing, and is involved in continuous remodelling throughout adult life. However, there are complex clinical conditions in which bone regeneration is required in large quantity, such as for skeletal reconstruction of large bone defects created by trauma, infection, tumour resection and skeletal abnormalities, or cases in which the regenerative process is compromised, including avascular necrosis, atrophic non-unions and osteoporosis. Currently, there is a plethora of different strategies to augment the impaired or 'insufficient' bone-regeneration process, including the 'gold standard' autologous bone graft, free fibula vascularised graft, allograft implantation, and use of growth factors, osteoconductive scaffolds, osteoprogenitor cells and distraction osteogenesis. Improved 'local' strategies in terms of tissue engineering and gene therapy, or even 'systemic' enhancement of bone repair, are under intense investigation, in an effort to overcome the limitations of the current methods, to produce bone-graft substitutes with biomechanical properties that are as identical to normal bone as possible, to accelerate the overall regeneration process, or even to address systemic conditions, such as skeletal disorders and osteoporosis
A comprehensive overview of radioguided surgery using gamma detection probe technology
The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology
- …