199 research outputs found

    Early onset of treatment effects with oral risperidone

    Get PDF
    BACKGROUND: The dogma of a delayed onset of antipsychotic treatment effects has been maintained over the past decades. However, recent studies have challenged this concept. We therefore performed an analysis of the onset of antipsychotic treatment effects in a sample of acutely decompensated patients with schizophrenia. METHODS: In this observational study, 48 inpatients with acutely decompensated schizophrenia were offered antipsychotic treatment with oral risperidone. PANSS-ratings were obtained on day 0, day 1, day 3, day 7 and day 14. RESULTS: Significant effects of treatment were already present on day 1 and continued throughout the study. The PANSS positive subscore and the PANSS total score improved significantly more than the PANSS negative subscore. CONCLUSION: Our results are consistent with the growing number of studies suggesting an early onset of antipsychotic treatment effects. However, non-pharmacological effects of treatment also need to be taken into consideration

    S100A14 Stimulates Cell Proliferation and Induces Cell Apoptosis at Different Concentrations via Receptor for Advanced Glycation End Products (RAGE)

    Get PDF
    S100A14 is an EF-hand containing calcium-binding protein of the S100 protein family that exerts its biological effects on different types of cells. However, exact extracellular roles of S100A14 have not been clarified yet. Here we investigated the effects of S100A14 on esophageal squamous cell carcinoma (ESCC) cell lines. Results demonstrated that low doses of extracellular S100A14 stimulate cell proliferation and promote survival in KYSE180 cells through activating ERK1/2 MAPK and NF-κB signaling pathways. Immunoprecipitation assay showed that S100A14 binds to receptor for advanced glycation end products (RAGE) in KYSE180 cells. Inhibition of RAGE signaling by different approaches including siRNA for RAGE, overexpression of a dominant-negative RAGE construct or a RAGE antagonist peptide (AmphP) significantly blocked S100A14-induced effects, suggesting that S100A14 acts via RAGE ligation. Furthermore, mutation of the N-EF hand of S100A14 (E39A, E45A) virtually reduced 10 µg/ml S100A14-induced cell proliferation and ERK1/2 activation. However, high dose (80 µg/ml) of S100A14 causes apoptosis via the mitochondrial pathway with activation of caspase-3, caspase-9, and poly(ADP-ribose) polymerase. High dose S100A14 induces cell apoptosis is partially in a RAGE-dependent manner. This is the first study to demonstrate that S100A14 binds to RAGE and stimulates RAGE-dependent signaling cascades, promoting cell proliferation or triggering cell apoptosis at different doses

    Molecular characterization and antiviral activity test of common drugs against echovirus 18 isolated in Korea

    Get PDF
    Genetic diversity and antiviral activity for five common antiviral drugs of echovirus (ECV) 5 isolated in Korea have been described. The present study extended these tests to a Korean ECV 18 isolate. An outbreak of aseptic meningitis caused by the ECV 18 isolate was reported in Korea in 2005, marking the first time this virus had been identified in the country since enterovirus surveillance began in 1993. Using a sample isolated from stool specimen of a 5-year-old male patient with aseptic meningitis, the complete genome sequence was obtained and was compared it with the Metcalf prototype strain. Unlike the ECV5 isolate, the 3' untranslated region had the highest identity value (94.2%) at the nucleotide level, while, at the amino acid level, the P2 region displayed the highest identity value (96.9%). These two strains shared all cleavage sites, with the exception of the 2B/2C site, which was RQ/NN in the Metcalf strain but RQ/NS in the Korean ECV 18 isolate. In Vero cells infected with the Korean ECV 18 isolate, no cytotoxicity was observed in the presence of azidothymidine, acyclovir, amantadine, lamivudine, or ribavirin, when the drugs were administered at a CC50 value >100 μg/mL. Of the five drugs, only amantadine (IC50: 4.97 ± 0.77 μg/mL, TI: 20.12) and ribavirin (IC50: 7.63 ± 0.87 μg/mL, TI: 13.11) had any antiviral activity against the Korean ECV 18 isolate in the five antiviral drugs. These antiviral activity effects were similar with results of the Korean ECV5 isolate

    Novel Mitochondrial Substrates of Omi Indicate a New Regulatory Role in Neurodegenerative Disorders

    Get PDF
    The mitochondrial protease OMI (also known as HtrA2) has been implicated in Parkinson's Disease (PD) and deletion or protease domain point mutations have shown profound neuropathologies in mice. A beneficial role by OMI, in preserving cell viability, is assumed to occur via the avoidance of dysfunctional protein turnover. However relatively few substrates for mitochondrial Omi are known. Here we report our identification of three novel mitochondrial substrates that impact metabolism and ATP production. Using a dual proteomic approach we have identified three interactors based upon ability to bind to OMI, and/or to persist in the proteome after OMI activity has been selectively inhibited. One candidate, the chaperone HSPA8, was common to each independent study. Two others (PDHB subunit and IDH3A subunit) did not appear to bind to OMI, however persisted in the mito-proteome when OMI was inhibited. Pyruvate dehydrogenase (PDH) and isocitrate dehydrogenase (IDH) are two key Kreb's cycle enzymes that catalyse oxidative decarboxylation control points in mitochondrial respiration. We verified both PDHB and IDH3A co-immunoprecipitate with HSPA8 and after elution, were degraded by recombinant HtrA2 in vitro. Additionally our gene expression studies, using rotenone (an inhibitor of Complex I) showed Omi expression was silenced when pdhb and idh3a were increased when a sub-lethal dose was applied. However higher dose treatment caused increased Omi expression and decreased levels of pdhb and idh3a transcripts. This implicates mitochondrial OMI in a novel mechanism relating to metabolism

    Molecular Determinants of S100B Oligomer Formation

    Get PDF
    Background: S100B is a dimeric protein that can form tetramers, hexamers and higher order oligomers. These forms have been suggested to play a role in RAGE activation. Methodology/Principal Findings: Oligomerization was found to require a low molecular weight trigger/cofactor and could not be detected for highly pure dimer, irrespective of handling. Imidazol was identified as a substance that can serve this role. Oligomerization is dependent on both the imidazol concentration and pH, with optima around 90 mM imidazol and pH 7, respectively. No oligomerization was observed above pH 8, thus the protonated form of imidazol is the active species in promoting assembly of dimers to higher species. However, disulfide bonds are not involved and the process is independent of redox potential. The process was also found to be independent of whether Ca 2+ is bound to the protein or not. Tetramers that are purified from dimers and imidazol by gel filtration are kinetically stable, but dissociate into dimers upon heating. Dimers do not revert to tetramer and higher oligomer unless imidazol is again added. Both tetramers and hexamers bind the target peptide from p53 with retained stoichiometry of one peptide per S100B monomer, and with high affinity (lgK = 7.360.2 and 7.260.2, respectively in 10 mM BisTris, 5 mM CaCl 2, pH 7.0), which is less than one order of magnitude reduced compared to dimer under the same buffer conditions. Conclusion/Significance: S100B oligomerization requires protonated imidazol as a trigger/cofactor. Oligomers ar

    The metastasis associated protein S100A4: role in tumour progression and metastasis

    Get PDF
    The metastasis associated protein S100A4 is a small calcium binding protein that is associated with metastatic tumors and appears to be a molecular marker for clinical prognosis. Below we discuss its biochemical properties and possible cellular functions in metastasis including cell motility, invasion, apoptosis, angiogenesis and differentiation

    Sensitization of interferon-γ induced apoptosis in human osteosarcoma cells by extracellular S100A4

    Get PDF
    BACKGROUND: S100A4 is a small Ca(2+)-binding protein of the S100 family with metastasis-promoting properties. Recently, secreted S100A4 protein has been shown to possess a number of functions, including induction of angiogenesis, stimulation of cell motility and neurite extension. METHODS: Cell cultures from two human osteosarcoma cell lines, OHS and its anti-S100A4 ribozyme transfected counterpart II-11b, was treated with IFN-γ and recombinant S100A4 in order to study the sensitizing effects of extracellular S100A4 on IFN-γ mediated apoptosis. Induction of apoptosis was demonstrated by DNA fragmentation, cleavage of poly (ADP-ribose) polymerase and Lamin B. RESULTS: In the present work, we found that the S100A4-expressing human osteosarcoma cell line OHS was more sensitive to IFN-γ-mediated apoptosis than the II-11b cells. S100A4 protein was detected in conditioned medium from OHS cells, but not from II-11b cells, and addition of recombinant S100A4 to the cell medium sensitized II-11b cells to apoptosis induced by IFN-γ. The S100A4/IFN-γ-mediated induction of apoptosis was shown to be independent of caspase activation, but dependent on the formation of reactive oxygen species. Furthermore, addition of extracellular S100A4 was demonstrated to activate nuclear factor-κB (NF-κB). CONCLUSION: In conclusion, we have shown that S100A4 sensitizes osteosarcoma cells to IFN-γ-mediated induction of apoptosis. Additionally, extracellular S100A4 activates NF-κB, but whether these events are causally related remains unknown

    Elevated Stearoyl-CoA Desaturase in Brains of Patients with Alzheimer's Disease

    Get PDF
    The molecular bases of Alzheimer's disease (AD) remain unclear. We used a lipidomic approach to identify lipid abnormalities in the brains of subjects with AD (N = 37) compared to age-matched controls (N = 17). The analyses revealed statistically detectable elevations in levels of non-esterified monounsaturated fatty acids (MUFAs) and mead acid (20:3n-9) in mid-frontal cortex, temporal cortex and hippocampus of AD patients. Further studies showed that brain mRNAs encoding for isoforms of the rate-limiting enzyme in MUFAs biosynthesis, stearoyl-CoA desaturase (SCD-1, SCD-5a and SCD-5b), were elevated in subjects with AD. The monounsaturated/saturated fatty acid ratio (‘desaturation index’) – displayed a strong negative correlation with measures of cognition: the Mini Mental State Examination test (r = −0.80; P = 0.0001) and the Boston Naming test (r = −0.57; P = 0.0071). Our results reveal a previously unrecognized role for the lipogenic enzyme SCD in AD
    corecore