12 research outputs found

    Pyrimidine-2,4,6-triones are a new class of voltage-gated L-type Ca(2+) channel activators.

    Get PDF
    Cav1.2 and Cav1.3 are the main L-type Ca(2+) channel subtypes in the brain. Cav1.3 channels have recently been implicated in the pathogenesis of Parkinson’s disease. Therefore, Cav1.3-selective blockers are developed as promising neuroprotective drugs. We studied the pharmacological properties of a pyrimidine-2,4,6-trione derivative (1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione, Cp8) recently reported as the first highly selective Cav1.3 blocker. Here we show, in contrast to this previous study, that Cp8 reproducibly increases inward Ca(2+) currents of Cav1.3 and Cav1.2 channels expressed in tsA-201 cells by slowing activation, inactivation and enhancement of tail currents. Similar effects are also observed for native Cav1.3 and Cav1.2 channels in mouse chromaffin cells, while non-L-type currents are unaffected. Evidence for a weak and non-selective inhibition of Cav1.3 and Cav1.2 currents is only observed in a minority of cells using Ba(2+) as charge carrier. Therefore, our data identify pyrimidine-2,4,6-triones as Ca(2+) channel activators

    Calcium and Vitamin D increase mRNA levels for the growth control hIK1 channel in human epidermal keratinocytes but functional channels are not observed

    Get PDF
    BACKGROUND: Intermediate-conductance, calcium-activated potassium channels (IKs) modulate proliferation and differentiation in mesodermal cells by enhancing calcium influx, and they contribute to the physiology of fluid movement in certain epithelia. Previous reports suggest that IK channels stimulate proliferative growth in a keratinocyte cell line; however, because these channels indirectly promote calcium influx, a critically unique component of the keratinocyte differentiation program, an alternative hypothesis is that they would be anti-proliferative and pro-differentiating. This study addresses these hypotheses. METHODS: Real-time PCR, patch clamp electrophysiology, and proliferation assays were used to determine if human IK1 (hIK1) expression and function are correlated with either proliferation or differentiation in cultured human skin epidermal keratinocytes, and skin biopsies grown in explant culture. RESULTS: hIK1 mRNA expression in human keratinocytes and skin was increased in response to anti-proliferative/pro-differentiating stimuli (elevated calcium and Vitamin D). Correspondingly, the hIK1 agonist 1-EBIO inhibited keratinocyte proliferation suggesting that the channel could be anti-proliferative and pro-differentiating. However, this proliferative inhibition by 1-EBIO was not reversed by a panel of hIK1 blockers, calling into question the mechanism of 1-EBIO action. Subsequent patch clamp electrophysiological analysis failed to detect hIK1 channel currents in keratinocytes, even those expressing substantial hIK1 mRNA in response to calcium and Vitamin D induced differentiation. Identical electrophysiological recording conditions were then used to observe robust IK1 currents in fibroblasts which express IK1 mRNA levels comparable to those of keratinocytes. Thus, the absence of observable hIK1 currents in keratinocytes was not a function of the electrophysiological techniques. CONCLUSION: Human keratinocyte differentiation is stimulated by calcium mobilization and influx, and differentiation stimuli coordinately upregulate mRNA levels of the calcium-activated hIK1 channel. This upregulation is paradoxical in that functional hIK1 channels are not observed in cultured keratinocytes. It appears, therefore, that hIK1 does not contribute to the functional electrophysiology of primary human keratinocytes, nor intact human skin. Further, the results indicate caution is required when interpreting experiments utilizing pharmacological hIK1 modulators in human keratinocytes

    Predominant Functional Expression of Kv1.3 by Activated Microglia of the Hippocampus after Status epilepticus

    Get PDF
    BACKGROUND:Growing evidence indicates that the functional state of microglial cells differs according to the pathological conditions that trigger their activation. In particular, activated microglial cells can express sets of Kv subunits which sustain delayed rectifying potassium currents (Kdr) and modulate differently microglia proliferation and ability to release mediators. We recently reported that hippocampal microglia is in a particular activation state after a status epilepticus (SE) and the present study aimed at identifying which of the Kv channels are functionally expressed by microglia in this model. METHODOLOGY/PRINCIPAL FINDINGS:SE was induced by systemic injection of kainate in CX3CR1(eGFP/+) mice and whole cell recordings of fluorescent microglia were performed in acute hippocampal slices prepared 48 h after SE. Microglia expressed Kdr currents which were characterized by a potential of half-maximal activation near -25 mV, prominent steady-state and cumulative inactivations. Kdr currents were almost abolished by the broad spectrum antagonist 4-Aminopyridine (1 mM). In contrast, tetraethylammonium (TEA) at a concentration of 1 mM, known to block Kv3.1, Kv1.1 and 1.2 subunits, only weakly reduced Kdr currents. However, at a concentration of 5 mM which should also affect Kv1.3 and 1.6, TEA inhibited about 30% of the Kdr conductance. Alpha-dendrotoxin, which selectively inhibits Kv1.1, 1.2 and 1.6, reduced only weakly Kdr currents, indicating that channels formed by homomeric assemblies of these subunits are not important contributors of Kdr currents. Finally, agitoxin-2 and margatoxin strongly inhibited the current. CONCLUSIONS/SIGNIFICANCE:These results indicate that Kv1.3 containing channels predominantly determined Kdr currents in activated microglia after SE

    The Spatial Distribution of LGR5+ Cells Correlates With Gastric Cancer Progression

    Get PDF
    In this study we tested the prevalence, histoanatomical distribution and tumour biological significance of the Wnt target protein and cancer stem cell marker LGR5 in tumours of the human gastrointestinal tract. Differential expression of LGR5 was studied on transcriptional (real-time polymerase chain reaction) and translational level (immunohistochemistry) in malignant and corresponding non-malignant tissues of 127 patients comprising six different primary tumour sites, i.e. oesophagus, stomach, liver, pancreas, colon and rectum. The clinico-pathological significance of LGR5 expression was studied in 100 patients with gastric carcinoma (GC). Non-neoplastic tissue usually harboured only very few scattered LGR5+ cells. The corresponding carcinomas of the oesophagus, stomach, liver, pancreas, colon and rectum showed significantly more LGR5+ cells as well as significantly higher levels of LGR5-mRNA compared with the corresponding non-neoplastic tissue. Double staining experiments revealed a coexpression of LGR5 with the putative stem cell markers CD44, Musashi-1 and ADAM17. Next we tested the hypothesis that the sequential changes of gastric carcinogenesis, i.e. chronic atrophic gastritis, intestinal metaplasia and invasive carcinoma, are associated with a reallocation of the LGR5+ cells. Interestingly, the spatial distribution of LGR5 changed: in non-neoplastic stomach mucosa, LGR5+ cells were found predominantly in the mucous neck region; in intestinal metaplasia LGR5+ cells were localized at the crypt base, and in GC LGR5+ cells were present at the luminal surface, the tumour centre and the invasion front. The expression of LGR5 in the tumour centre and invasion front of GC correlated significantly with the local tumour growth (T-category) and the nodal spread (N-category). Furthermore, patients with LGR5+ GCs had a shorter median survival (28.0±8.6 months) than patients with LGR5− GCs (54.5±6.3 months). Our results show that LGR5 is differentially expressed in gastrointestinal cancers and that the spatial histoanatomical distribution of LGR5+ cells has to be considered when their tumour biological significance is sought

    Comparative mRNA and microRNA Expression Profiling of Three Genitourinary Cancers Reveals Common Hallmarks and Cancer-Specific Molecular Events

    Get PDF
    Genome-wide gene expression profile using deep sequencing technologies can drive the discovery of cancer biomarkers and therapeutic targets. Such efforts are often limited to profiling the expression signature of either mRNA or microRNA (miRNA) in a single type of cancer.Here we provided an integrated analysis of the genome-wide mRNA and miRNA expression profiles of three different genitourinary cancers: carcinomas of the bladder, kidney and testis.Our results highlight the general or cancer-specific roles of several genes and miRNAs that may serve as candidate oncogenes or suppressors of tumor development. Further comparative analyses at the systems level revealed that significant aberrations of the cell adhesion process, p53 signaling, calcium signaling, the ECM-receptor and cell cycle pathways, the DNA repair and replication processes and the immune and inflammatory response processes were the common hallmarks of human cancers. Gene sets showing testicular cancer-specific deregulation patterns were mainly implicated in processes related to male reproductive function, and general disruptions of multiple metabolic pathways and processes related to cell migration were the characteristic molecular events for renal and bladder cancer, respectively. Furthermore, we also demonstrated that tumors with the same histological origins and genes with similar functions tended to group together in a clustering analysis. By assessing the correlation between the expression of each miRNA and its targets, we determined that deregulation of 'key' miRNAs may result in the global aberration of one or more pathways or processes as a whole.This systematic analysis deciphered the molecular phenotypes of three genitourinary cancers and investigated their variations at the miRNA level simultaneously. Our results provided a valuable source for future studies and highlighted some promising genes, miRNAs, pathways and processes that may be useful for diagnostic or therapeutic applications
    corecore