11 research outputs found

    Not Available

    No full text
    Not AvailableIn molecular biology, we most often handle with bacmid when working with baculovirus expression system. The cloning involves a two-step process and the recombinant bacmids are screened by bluewhite lac operon system, white colonies are thought to be positive for transposition. But in our study with PCR based approach, we found that not all the white colonies are recombinants. Hence, it is necessary to be cautious while screening for recombinant bacmids and may be it is good too screen by two-way approach, by blue-white lac operon system followed by PCR approach using one bacmid specific and one gene specific primers.Not Availabl

    Not Available

    No full text
    Not AvailableViperin, also known as radical S-adenosyl methionine domain-containing protein (RSAD2) is a multifunctional interferon-stimulated gene (ISG) that is activated during the viral infections. Viperin belongs to S-adenosyl methionine (SAM) superfamily of enzymes known to catalyze radical-mediated reactions and viperin inhibits a wide range of DNA and RNA viruses through its broad range of activity. The present study reports cloning and expression of bovine viperin in a bacterial expression system. PCR-based site-directed mutagenesis was carried out for deletion of N-terminal 1–70 amino acid containing amphipathic helix of viperin that interferes in protein expression and purification. The resultant truncated viperin protein was expressed in Escherichia coli, BL-21(DE3) competent cells and purified using nickel charged affinity column. The truncated 54 kDa protein was confirmed by western blot using human RSAD2 as a probe. Further, in house, hyperimmune serum was raised against the truncated viperin in the rabbit and the reactivity was confirmed by western blot using mammalian expression vector construct of viperin transfected in Baby Hamster kidney (BHK) cells and in MDBK cells infected with Foot and Mouth disease Asia I virusICAR-IVR

    Not Available

    No full text
    Not AvailableViperin, also known as radical S-adenosyl methionine domain-containing protein (RSAD2) is a multifunctional interferon-stimulated gene (ISG) that is activated during the viral infections. Viperin belongs to S-adenosyl methionine (SAM) superfamily of enzymes known to catalyze radical-mediated reactions and viperin inhibits a wide range of DNA and RNA viruses through its broad range of activity. The present study reports cloning and expression of bovine viperin in a bacterial expression system. PCR-based site-directed mutagenesis was carried out for deletion of N-terminal 1–70 amino acid containing amphipathic helix of viperin that interferes in protein expression and purification. The resultant truncated viperin protein was expressed in Escherichia coli, BL-21(DE3) competent cells and purified using nickel charged affinity column. The truncated 54 kDa protein was confirmed by western blot using human RSAD2 as a probe. Further, in house, hyperimmune serum was raised against the truncated viperin in the rabbit and the reactivity was confirmed by western blot using mammalian expression vector construct of viperin transfected in Baby Hamster kidney (BHK) cells and in MDBK cells infected with Foot and Mouth disease Asia I virus.Not Availabl

    Expression of VP1 protein of serotype A and O of foot-and-mouth disease virus in transgenic sunnhemp plants and its immunogenicity for guinea pigs

    No full text
    Recently, transgenic plants expressing immunogenic proteins of foot-and-mouth disease virus (FMDV) have been used as oral or parenteral vaccines against foot-and-mouth disease (FMD). They exhibit advantages like cost effectiveness, absence of processing, thermostability, and easy oral application. FMDV VP1 protein of single serotype has been mostly used as immunogen. Here we report the development of a bivalent vaccine with tandem-linked VP1 proteins of two serotypes, A and O, present in transgenic forage crop Crotalaria juncea. The expression of the bivalent protein in the transgenic plants was confirmed by Western blot analysis. Guinea pig reacted to orally or parenterally applied vaccine by humoral as well as cell-mediated immune responses including serum antibodies and stimulated lymphocytes, respectively. The vaccine protected the animals against a challenge with the virus of serotype A as well as O. This is the first report on the development of a bivalent FMD vaccine using a forage crop

    Expression of bovine interleukin 15 and evaluation of its biological activity in vitro.

    No full text
    Bovine IL-15 has been successfully cloned and expressed in our work, and the biological activity shows that the purified fusion protein is biologically active. As there is an increase in levels of CPT1a an enzyme critical for survival of memory T cells, IL-15 can be used for increase in the memory response, which can be used as an adjuvant with viral vaccines for increasing the immunity

    Not Available

    No full text
    Not AvailableThe development of a negative marker vaccine against the foot-and-mouth disease virus (FMDV) will enhance the capabilities to differentiate vaccinated from infected animals and move forward in the progressive control pathway for the control of FMD. Here, we report the development of mutant FMDV of Asia1 with partial deletion of non-structural proteins 3A and 3B and characterization of their infectivity and protection response in the guinea pig model. The deleted FMDV Asia1/ IND/63/1972 mutants, pAsiaΔ3A and pAsiaΔ3A3B1 were constructed from the full-length infectious clone pAsiaWT, the viable virus was rescued, and the genetic stability of the mutants was confirmed by 20 monolayer passages in BHK21 cells. The mutant Asia1 viruses showed comparable growth pattern and infectivity with that of AsiaWT in the cell culture. However, the AsiaΔ3A3B1 virus showed smaller plaque and lower virus titer with reduced infectivity in the suckling mice. In guinea pigs, the AsiaΔ3A3B1 virus failed to induce the disease, whereas the AsiaΔ3A virus induced typical secondary lesions of FMD. Vaccination with inactivated Asia1 mutant viruses induced neutralizing antibody response that was significantly lower than that of the parent virus on day 28 post-vaccination (dpv) in guinea pigs (P < 0.05). Furthermore, challenging the vaccinated guinea pigs with the homologous vaccine strain of FMDV Asia1 conferred complete protection. It is concluded that the mutant AsiaΔ3A3B1 virus has the potential to replace the wild-type virus for use as a negative marker vaccine after assessing the vaccine worth attributes in suspension cell and protective efficacy study in cattle.CAAST; ICAR-IVR

    MOESM1 of Vaccination with recombinant adenovirus expressing peste des petits ruminants virus-F or -H proteins elicits T cell responses to epitopes that arises during PPRV infection

    No full text
    Additional file 1. Gating strategies for IFN-γ detection, cytotoxicity assays and CD45RO expression. (A) For IFN-γ detection, cells were selected by FSC/SSC discrimination. Gating for IFN-γ+ events was set using fluorescence minus one antibody (isotype) staining for CD4+ and CD8+ events. This gating was then maintained to measured IFN-γ+ events in stimulated cells. (B) In cytotoxicity assays, FSC/SSC discrimination was applied to gate putative live and dead cell events. Target cells labelled with the cell membrane marker PKH67 were first run on the cytometer to set up the target cell gate (PKH67+ events). Propidium iodide was used to discriminate live and dead cells. Bright PKH67+ and propidium iodide+ events were considered dead target cells. For each target cells, spontaneous and maximum cell death controls were acquired. In cytotoxicity co-culture assays, specific target cell lysis was assessed in the bright PKH67+gate. (C) For CD45RO expression, cells were first selected selected by FSC/SSC discrimination followed by CD4 or CD8 gating. Within these CD4+ or CD8+ gates, CD45RO+ gate was set using fluorescence minus one antibody (isotype) staining
    corecore