29,130 research outputs found
Equivalent air spring suspension model for quarter-passive model of passenger vehicles
This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system
Photothermal Conversion Characteristics of Silver Nanoparticle Dispersions
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Nanoparticle-based direct absorption system is a recent development, which employs nanoparticles to absorb and convert solar energy directly into thermal energy within the fluid volume. This work reports for the first time the use of plasomic nanoparticles (PNPs) to improve the direct photo-thermal conversion efficiency. Rod-shaped silver nanoparticles are synthesized and used as an example to illustrate the photo-thermal conversion characteristics of PNPs and the effect of particle shape. The result reveals a significant role of particle morphology on the photo-thermal conversion efficiency (PTE). For spherical silver particles, constant specific absorption rate (SAR), ~0.14 kW/g, is observed and the PTE increases nearly linearly with the particle concentration. For rod-shaped silver nanoparticles, much higher SARs (2~5 kW/g) are obtained, and the PTE increases from 43% (pure DI water) to 61% at a low concentration of 0.0028%. It is suggested that the increased specific surface area and the absorption spectrum variation are the two main reasons for the strong heating effect of rod-shaped silver nanoparticles
Does prohibitin expression regulate sperm mitochondrial membrane potential, sperm motility, and male fertility?
Prohibitin (PHB) is a highly conserved major sperm mitochondrial membrane protein whose absence in somatic cells is associated with mitochondrial membrane depolarization and increased generation of reactive oxygen species (ROS). Our recent findings suggest that high levels of oxidants in human semen may contribute to male infertility and that sperm motility could be the earliest and most sensitive indicator of oxidative damage. Based on PHB's roles in mitochondrial sub-compartmentalization and respiratory chain assembly, we examine sperm PHB expression and mitochondrial membrane potential (MITO) in infertile men with poor sperm motility (asthenospermia, A) and/or low sperm concentrations (oligoasthenospermia, OA). Here, we demonstrate that MITO is significantly lower in sperm from A and OA subjects than in normospermic (N) subjects; the decrease is more severe for OA than for A subjects. PHB expression is also significantly lower in sperm from A and OA subjects. Significantly positive correlations are found among PHB expression, MITO, and sperm motility in normospermic, asthenospermic, and oligoasthenospermic subjects. Collectively, our observations lead to the hypothesis that PHB expression is an indicator of sperm quality in infertile men, and that it regulates sperm motility via an alteration in MITO and increased ROS levels. © Copyright 2012, Mary Ann Liebert, Inc.published_or_final_versio
Promoting positive development of migrant children in Hangzhou : pioneering experience and preliminary evaluation findings
Version of RecordPublishe
Recommended from our members
JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation.
The JAK2V617F mutation is found in most patients with a myeloproliferative neoplasm (MPN). This gain-of-function mutation dysregulates cytokine signaling and is associated with increased accumulation of DNA damage, a process likely to drive disease evolution. JAK2V617F inhibits NHE-1 upregulation in response to DNA damage and consequently represses Bcl-xL deamidation and apoptosis, thus giving rise to inappropriate cell survival. However, the mechanism whereby NHE-1 expression is inhibited by JAK2V617F is unknown. In this study, we demonstrate that the accumulation of reactive oxygen species (ROS) in cells expressing JAK2V617F compromises the NHE-1/Bcl-xL deamidation pathway by repressing NHE-1 upregulation in response to DNA damage. In JAK2V617F-positive cells, increased ROS levels results from aberrant PI3K signaling, which decreases nuclear localization of FOXO3A and decreases catalase expression. Furthermore, when compared with autologous control erythroblasts, clonally derived JAK2V617F-positive erythroblasts from MPN patients displayed increased ROS levels and reduced nuclear FOXO3A. However, in hematopoietic stem cells (HSCs), FOXO3A is largely localized within the nuclei despite the presence of JAK2V617F mutation, suggesting that JAK2-FOXO signaling has a different effect on progenitors compared with stem cells. Inactivation of FOXO proteins and elevation of intracellular ROS are characteristics common to many cancers, and hence these findings are likely to be of relevance beyond the MPN field.Work in the Green lab is supported by Leukemia and Lymphoma
Research, Cancer Research UK, the Kay Kendall Leukaemia Fund, the NIHR
Cambridge Biomedical Research Centre, the Cambridge Experimental Cancer
Medicine Centre, and the Leukemia & Lymphoma Society of America. DGK was
supported by a postdoctoral fellowship from the Canadian Institutes of Health
Research (Ottawa, ON), and a Lady Tata Memorial Trust International Award for
Research in Leukaemia (London, UK). HJP was supported by a postdoctoral
fellowship from the Human Frontier Science Program.This is the accepted manuscript. The final version is available at http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2015285a.html
Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1
published_or_final_versio
Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2
The linear dispersion relation in graphene[1,2] gives rise to a surprising
prediction: the resistivity due to isotropic scatterers (e.g. white-noise
disorder[3] or phonons[4-8]) is independent of carrier density n. Here we show
that acoustic phonon scattering[4-6] is indeed independent of n, and places an
intrinsic limit on the resistivity in graphene of only 30 Ohm at room
temperature (RT). At a technologically-relevant carrier density of 10^12 cm^-2,
the mean free path for electron-acoustic phonon scattering is >2 microns, and
the intrinsic mobility limit is 2x10^5 cm^2/Vs, exceeding the highest known
inorganic semiconductor (InSb, ~7.7x10^4 cm^2/Vs[9]) and semiconducting carbon
nanotubes (~1x10^5 cm^2/Vs[10]). We also show that extrinsic scattering by
surface phonons of the SiO2 substrate[11,12] adds a strong temperature
dependent resistivity above ~200 K[8], limiting the RT mobility to ~4x10^4
cm^2/Vs, pointing out the importance of substrate choice for graphene
devices[13].Comment: 16 pages, 3 figure
On the perturbative S-matrix of generalized sine-Gordon models
Motivated by its relation to the Pohlmeyer reduction of AdS_5 x S^5
superstring theory we continue the investigation of the generalized sine-Gordon
model defined by SO(N+1)/SO(N) gauged WZW theory with an integrable potential.
Extending our previous work (arXiv:0912.2958) we compute the one-loop
two-particle S-matrix for the elementary massive excitations. In the N = 2 case
corresponding to the complex sine-Gordon theory it agrees with the charge-one
sector of the quantum soliton S-matrix proposed in hep-th/9410140. In the case
of N > 2 when the gauge group SO(N) is non-abelian we find a curious anomaly in
the Yang-Baxter equation which we interpret as a gauge artifact related to the
fact that the scattered particles are not singlets under the residual global
subgroup of the gauge group
Testing stock market convergence: a non-linear factor approach
This paper applies the Phillips and Sul (Econometrica 75(6):1771–1855, 2007) method to test for convergence in stock returns to an extensive dataset including monthly stock price indices for five EU countries (Germany, France, the Netherlands, Ireland and the UK) as well as the US between 1973 and 2008. We carry out the analysis on both sectors and individual industries within sectors. As a first step, we use the Stock and Watson (J Am Stat Assoc 93(441):349–358, 1998) procedure to filter the data in order to extract the long-run component of the series; then, following Phillips and Sul (Econometrica 75(6):1771–1855, 2007), we estimate the relative transition parameters. In the case of sectoral indices we find convergence in the middle of the sample period, followed by divergence, and detect four (two large and two small) clusters. The analysis at a disaggregate, industry level again points to convergence in the middle of the sample, and subsequent divergence, but a much larger number of clusters is now found. Splitting the cross-section into two subgroups including euro area countries, the UK and the US respectively, provides evidence of a global convergence/divergence process not obviously influenced by EU policies
- …
