131 research outputs found

    Paraoxonase-1 Is Not a Major Determinant of Stent Thrombosis in a Taiwanese Population

    Get PDF
    BACKGROUND: Clopidogrel is a prodrug that undergoes in vivo bioactivation to show its antiplatelet effects. Recent studies have shown that cytochrome P450 (CYP), ATP-binding cassette transporters (ABCB1), and paraoxonase-1 (PON1) play crucial roles in clopidogrel bioactivation. Here, we aim to determine the effects of genetic polymorphisms of CYP (CYP 2C19*2, CYP 2C19*3, and CYP 2C19*17), ABCB1 (ABCB1 3435C>T, ABCB1 129T>C, and ABCB1 2677G>T/A), and PON1 (PON1 Q192R, PON1 L55M, and PON1 108C>T) on the development of stent thrombosis (ST) in patients receiving clopidogrel after percutaneous coronary intervention (PCI). METHODS AND RESULTS: We evaluated the incidence of ST (0.64%) in 4964 patients who were recruited in the CAPTAIN registry (Cardiovascular Atherosclerosis and Percutaneous TrAnsluminal INterventions). The presence of genetic polymorphisms was assessed in 20 subjects who developed ST after aspirin and clopidogrel therapy and in 40 age- and sex-matched control subjects who did not develop ST, which was documented after 9 months of angiographic follow-up. ST was acute in 5 subjects, subacute in 7, late in 7, and very late in 1. The presence of CYP 2C19*2 allele was significantly associated with ST (adjusted odds ratio [ORadj]: 4.20, 95% confidence interval [CI], 1.263-9.544; P = 0.031). However, genetic variations in PON1 and ABCB1 showed no significant association with ST. CONCLUSION: We conclude that in a Taiwanese population, PON1 Q192R genotype is not associated with ST development after PCI. However, the presence of CYP 2C19*2 allele is a risk factor for ST development after PCI

    Lipopolysaccharide and Tumor Necrosis Factor Regulate Parkin Expression via Nuclear Factor-Kappa B

    Get PDF
    Inflammation and oxidative stress have been implicated in the pathophysiology of Parkinson's disease (PD) and inhibition of microglial activation attenuates degeneration of dopaminergic (DA) neurons in animal models of PD. Loss-of-function mutations in the parkin gene, which encodes an E3 ubiquitin ligase, cause autosomal recessive parkinsonism. While most studies on Parkin have focused on its function in neurons, here we demonstrate that Parkin mRNA and protein is detectable in brain-resident microglia and peripheral macrophages. Using pharmacologic and genetic approaches, we found that Parkin levels are regulated by inflammatory signaling. Specifically, exposure to LPS or Tumor Necrosis Factor (TNF) induced a transient and dose-dependent decrease in Parkin mRNA and protein in microglia, macrophages and neuronal cells blockable by inhibitors of Nuclear Factor-Kappa B (NF-κB) signaling and not observed in MyD88-null cells. Moreover, using luciferase reporter assays, we identified an NF-κB response element in the mouse parkin promoter responsible for mediating the transcriptional repression, which was abrogated when the consensus sequence was mutated. Functionally, activated macrophages from Parkin-null mice displayed increased levels of TNF, IL-1β, and iNOS mRNA compared to wild type macrophages but no difference in levels of Nrf2, HO-1, or NQO1. One implication of our findings is that chronic inflammatory conditions may reduce Parkin levels and phenocopy parkin loss-of-function mutations, thereby increasing the vulnerability for degeneration of the nigrostriatal pathway and development of PD

    The Four-Dimensional Symptom Questionnaire (4DSQ): a validation study of a multidimensional self-report questionnaire to assess distress, depression, anxiety and somatization

    Get PDF
    BACKGROUND: The Four-Dimensional Symptom Questionnaire (4DSQ) is a self-report questionnaire that has been developed in primary care to distinguish non-specific general distress from depression, anxiety and somatization. The purpose of this paper is to evaluate its criterion and construct validity. METHODS: Data from 10 different primary care studies have been used. Criterion validity was assessed by comparing the 4DSQ scores with clinical diagnoses, the GPs' diagnosis of any psychosocial problem for Distress, standardised psychiatric diagnoses for Depression and Anxiety, and GPs' suspicion of somatization for Somatization. ROC analyses and logistic regression analyses were used to examine the associations. Construct validity was evaluated by investigating the inter-correlations between the scales, the factorial structure, the associations with other symptom questionnaires, and the associations with stress, personality and social functioning. The factorial structure of the 4DSQ was assessed through confirmatory factor analysis (CFA). The associations with other questionnaires were assessed with Pearson correlations and regression analyses. RESULTS: Regarding criterion validity, the Distress scale was associated with any psychosocial diagnosis (area under the ROC curve [AUC] 0.79), the Depression scale was associated with major depression (AUC = 0.83), the Anxiety scale was associated with anxiety disorder (AUC = 0.66), and the Somatization scale was associated with the GPs' suspicion of somatization (AUC = 0.65). Regarding the construct validity, the 4DSQ scales appeared to have considerable inter-correlations (r = 0.35-0.71). However, 30–40% of the variance of each scale was unique for that scale. CFA confirmed the 4-factor structure with a comparative fit index (CFI) of 0.92. The 4DSQ scales correlated with most other questionnaires measuring corresponding constructs. However, the 4DSQ Distress scale appeared to correlate with some other depression scales more than the 4DSQ Depression scale. Measures of stress (i.e. life events, psychosocial problems, and work stress) were mainly associated with Distress, while Distress, in turn, was mainly associated with psychosocial dysfunctioning, including sick leave. CONCLUSION: The 4DSQ seems to be a valid self-report questionnaire to measure distress, depression, anxiety and somatization in primary care patients. The 4DSQ Distress scale appears to measure the most general, most common, expression of psychological problems

    NEXMIF encephalopathy: an X-linked disorder with male and female phenotypic patterns

    Get PDF
    Purpose: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. / Methods: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. / Results: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. / Conclusion: NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic–atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants

    Sex Differences in the Brain: A Whole Body Perspective

    Get PDF
    Most writing on sexual differentiation of the mammalian brain (including our own) considers just two organs: the gonads and the brain. This perspective, which leaves out all other body parts, misleads us in several ways. First, there is accumulating evidence that all organs are sexually differentiated, and that sex differences in peripheral organs affect the brain. We demonstrate this by reviewing examples involving sex differences in muscles, adipose tissue, the liver, immune system, gut, kidneys, bladder, and placenta that affect the nervous system and behavior. The second consequence of ignoring other organs when considering neural sex differences is that we are likely to miss the fact that some brain sex differences develop to compensate for differences in the internal environment (i.e., because male and female brains operate in different bodies, sex differences are required to make output/function more similar in the two sexes). We also consider evidence that sex differences in sensory systems cause male and female brains to perceive different information about the world; the two sexes are also perceived by the world differently and therefore exposed to differences in experience via treatment by others. Although the topic of sex differences in the brain is often seen as much more emotionally charged than studies of sex differences in other organs, the dichotomy is largely false. By putting the brain firmly back in the body, sex differences in the brain are predictable and can be more completely understood

    Constraints on black-hole charges with the 2017 EHT observations of M87*

    Get PDF
    Our understanding of strong gravity near supermassive compact objects has recently improved thanks to the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes

    The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole

    Get PDF
    Synchrotron radiation from hot gas near a black hole results in a polarized image. The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitational lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple model of an axisymmetric, equatorial accretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov and conservation of the Walker–Penrose constant, we provide analytic estimates for the image polarization. We test this model using currently favored general relativistic magnetohydrodynamic simulations of M87*, using ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr A* with GRAVITY. With suitably chosen parameters, our simple model can reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of M87*. Under the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images

    First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon

    Get PDF
    Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma properties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density n_{e} ~ 10^{4–7} cm^{−3}, magnetic field strength B ~ 1–30 G, and electron temperature T_{e} ~ (1–12) × 10^{10} K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3–20) × 10^{−4} M⊙ yr^{−1}
    • …
    corecore