119 research outputs found
Climate and land-use change during the late Holocene at Lake Ledro (southern Alps, Italy)
International audienceThis paper investigates the relative influences of climatic and anthropogenic factors in explaining environmental and societal changes in the southern Alps, Italy. We investigate a deep sediment core (LL081) from Lake Ledro (652 m a.s.l.). Environmental changes are reconstructed through multiproxy analysis, that is, pollen-based vegetation and climate reconstruction, magnetic susceptibility (MS), lake level, and flood frequency, and the paper focuses on the climate and land-use changes which occurred during the late Holocene. For this time interval, Lake Ledro records high mean water table, increasing amount of pollen-based precipitation, and more erosive conditions. Therefore, while a more humid late Holocene in the southern Alps has the potential to reinforce the forest presence, pollen evidence suggests that anthropogenic activities changed the impact of this regional scenario. Land-use activity (forest clearance for pastoralism, farming, and arboriculture) opened up the large vegetated slopes in the catchment of Lake Ledro, which in turn magnified the erosion related to the change in the precipitation pattern. The record of an almost continuous human occupation for the last 4100 cal. BP is divided into several land-use phases. On the one hand, forest redevelopments on abandoned or less cultivated areas appear to be climatically induced as they occurred in relation with well-known events such as the 2.8-kyr cold event and the ‘Little Ice Age’. On the other hand, climatically independent changes in land use or habitat modes are observed, such as the late-Bronze-Age lake-dwellings abandonment, the human population migration at c. 1600 cal. BP, and the period of the Black Death and famines at 600 cal. BP
The Holocene history of the NE Black Sea and surrounding areas: An integrated record of marine and terrestrial palaeoenvironmental change
Here we present an almost complete and integrated Holocene record of marine and terrestrial palaeoenvironmental change from the NE shelf of the Black Sea. A dinoflagellate cyst record used to reconstruct Holocene sea-surface conditions highlights that the NE shelf was a brackish water environment, with a minimum salinity of 7 psu in the early-Holocene before changing at a gradual rate to a more saline environment with maximum salinities of ~18 psu being reached around 3 cal. ka. A warming phase was detected from 6 cal. ka BP, with warmest conditions between 3 and 2.5 cal. ka BP. A pollen record is used to examine the major climate and land-use changes in the eastern Black Sea region. Biome reconstructions show that the temperate deciduous forest dominates throughout the record, although with an overall decline. From early-Holocene to the first hiatus around ~9 cal. ka BP, Pinus pollen dominates, while taxa representing a mixed oak-hornbeam-beech forest are less abundant, indicating relatively cool and dry conditions. Between ~7.9 and ~6.1 cal. ka BP, a thermophilous deciduous forest established, suggesting an overall warming trend and humid conditions. From 4 cal. ka BP, Pinus dominates the pollen record, accompanied by an increase of herbs, implying an opening of the landscape, which would coincide with the beginning of the Meghalayan Age. The integrated record of the marine and terrestrial climate indicators supports the notion that this change in landscape may have been triggered by a combination of warmer and drier conditions and human activities in this region
Plant Diversity Changes during the Postglacial in East Asia: Insights from Forest Refugia on Halla Volcano, Jeju Island
Understanding how past climate changes affected biodiversity is a key issue in contemporary ecology and conservation biology. These diversity changes are, however, difficult to reconstruct from paleoecological sources alone, because macrofossil and pollen records do not provide complete information about species assemblages. Ecologists therefore use information from modern analogues of past communities in order to get a better understanding of past diversity changes. Here we compare plant diversity, species traits and environment between late-glacial Abies, early-Holocene Quercus, and mid-Holocene warm-temperate Carpinus forest refugia on Jeju Island, Korea in order to provide insights into postglacial changes associated with their replacement. Based on detailed study of relict communities, we propose that the late-glacial open-canopy conifer forests in southern part of Korean Peninsula were rich in vascular plants, in particular of heliophilous herbs, whose dramatic decline was caused by the early Holocene invasion of dwarf bamboo into the understory of Quercus forests, followed by mid-Holocene expansion of strongly shading trees such as maple and hornbeam. This diversity loss was partly compensated in the Carpinus forests by an increase in shade-tolerant evergreen trees, shrubs and lianas. However, the pool of these species is much smaller than that of light-demanding herbs, and hence the total species richness is lower, both locally and in the whole area of the Carpinus and Quercus forests. The strongly shading tree species dominating in the hornbeam forests have higher leaf tissue N and P concentrations and smaller leaf dry matter content, which enhances litter decomposition and nutrient cycling and in turn favored the selection of highly competitive species in the shrub layer. This further reduced available light and caused almost complete disappearance of understory herbs, including dwarf bamboo
New palynological and tephrochronological investigations of two salt lagoons on the island of Mljet, south Dalmatia, Croatia
In the sediments of both of the investigated lakes, the tephra from the Mercato-Ottaviano eruption (Vesuvius, southern Italy) (ca. 7900 B.P.) could be identified. The palynological investigations show that from ca. 9000-7200 B.P. (8000-6000 cal B.C.) deciduous oak forests predominated, with only a few representatives of Mediterranean vegetation. At the transition to the central European Atlantic Period those forests changed to an open vegetation type, dominated byJuniperus andPhillyrea. At about 5500 B.P. (4400 cal B.C.), theJuniperus-Phillyrea vegetation was replaced byQuercus ilex woodland that still occurs on the island of Mljet today and is considered to be the natural vegetation of the Dalmatian coastland. The associated vegetation of theQ. ilex forests changed several times. At the beginning of theQ. ilex period,Juniperus values were still high, but soon they decreased andErica spread. In more recent times theQ. ilex forests were partially replaced by plantations ofPinus halcpensis. Indicators of human impact are sparse throughout the pollen record. Clear evidence for human influence exists only from ca. 3100 B.P. (1300 cal B.C.) whenJuglans andPinus halepensis were introduced to the area. Later,Olea andSecale cultivation can be suggested and further spreading ofJuniperus indicates use of the land as pasture
- …