38 research outputs found

    選択的セロトニン再取り込み阻害薬とセロトニン4受容体作動薬の直腸吻合部におけるインビボ神経再建に与える効果の比較

    Get PDF
    It was recently reported that activation of enteric neural 5-HT(4) receptors (SR4) promotes reconstruction of enteric neural circuit injury in distal gut of guinea pigs and that this reconstruction involves neural stem cells. We aimed to explore a novel approach using a selective serotonin reuptake inhibitor (SSRI), which increases endogenous 5-HT, to repair enteric nerve fiber injury in the rat distal gut. Enteric nerve fiber injury was performed by rectal transection and subsequent end-to-end one-layer anastomosis. The SSRI fluvoxamine maleate (100 μmol/l) was applied locally at the anastomotic site to compare with the 5-HT(4) agonist mosapride citrate (100 μmol/l) (applied for patent) applied locally and orally. Unlike mosapride, fluvoxamine failed to promote the regeneration of the nerve fiber tract across the anastomosis. Furthermore, fluvoxamine did not generate anti-distal-less homeobox 2 (DLX2)- and anti-SR4-positive cells (neural stem cells) and/or anti-neurofilament (NF)-positive cells (neural cells) in newly formed granulation tissue at the anastomosis, whereas these cell types were observed in mosapride-treated preparations. In contrast to its effects in guinea pigs, mosapride generated 5-bromo-2'-deoxyuridine (BrdU)-positive neural cells in ganglia sites 3 mm oral and anal from the anastomosis 2 wk after nerve fiber injury. All actions of mosapride were observed after local and or oral applications. These findings indicate that local SSRI treatment does not induce in vivo nerve fiber tract growth across the anastomosis in the rat distal gut. Mosapride induces nerve fiber tract growth across the anastomosis, mediated through enteric neural stem cells possibly from neural crest-derived stem cells or mesenchymal stem cells in the bone marrow.博士(医学)・甲616号・平成26年3月17日発行元の規定により、本文の登録不可。本文は以下のURLを参照 "http://dx.doi.org/10.1152/ajpgi.00284.2011

    A novel ex vivo lung cancer model based on bioengineered rat lungs

    Get PDF
    Introduction: Two-dimensional cell cultures have contributed substantially to lung cancer research, but 3D cultures are gaining attention as a new, more efficient, and effective research model. A model reproducing the 3D characteristics and tumor microenvironment of the lungs in vivo, including the co-existence of healthy alveolar cells with lung cancer cells, is ideal. Here, we describe the creation of a successful ex vivo lung cancer model based on bioengineered lungs formed by decellularization and recellularization.Methods: Human cancer cells were directly implanted into a bioengineered rat lung, which was created with a decellularized rat lung scaffold reseeded with epithelial cells, endothelial cells and adipose-derived stem cells. Four human lung cancer cell lines (A549, PC-9, H1299, and PC-6) were applied to demonstrate forming cancer nodules on recellularized lungs and histopathological assessment were made among these models. MUC-1 expression analysis, RNA-seq analysis and drug response test were performed to demonstrate the superiority of this cancer model.Results: The morphology and MUC-1 expression of the model were like those of lung cancer in vivo. RNA sequencing revealed an elevated expression of genes related to epithelial-mesenchymal transition, hypoxia, and TNF-α signaling via NF-κB; but suppression of cell cycle-related genes including E2F. Drug response assays showed that gefitinib suppressed PC-9 cell proliferation equally well in the 3D lung cancer model as in 2D culture dishes, albeit over a smaller volume of cells, suggesting that fluctuations in gefitinib resistance genes such as JUN may affect drug sensitivity.Conclusions: A novel ex vivo lung cancer model was closely reproduced the 3D structure and microenvironment of the actual lungs, highlighting its possible use as a platform for lung cancer research and pathophysiological studies

    LRRK2 Phosphorylates Tubulin-Associated Tau but Not the Free Molecule: LRRK2-Mediated Regulation of the Tau-Tubulin Association and Neurite Outgrowth

    Get PDF
    Leucine-rich repeat kinase 2 (LRRK2), a large protein kinase containing multi-functional domains, has been identified as the causal molecule for autosomal-dominant Parkinson's disease (PD). In the present study, we demonstrated for the first time that (i) LRRK2 interacts with tau in a tubulin-dependent manner; (ii) LRRK2 directly phosphorylates tubulin-associated tau, but not free tau; (iii) LRRK2 phosphorylates tau at Thr181 as one of the target sites; and (iv) The PD-associated LRRK2 mutations, G2019S and I2020T, elevated the degree of tau-phosphorylation. These results provide direct proof that tau is a physiological substrate for LRRK2. Furthermore, we revealed that LRRK2-mediated phosphorylation of tau reduces its tubulin-binding ability. Our results suggest that LRRK2 plays an important role as a physiological regulator for phosphorylation-mediated dissociation of tau from microtubules, which is an integral aspect of microtubule dynamics essential for neurite outgrowth and axonal transport

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Mechanism of Depigmentation by Hydroquinone

    Get PDF
    Histochemical (dopa reaction) and electron microscopic studies were carried out to elucidate the nature of the chemical depigmentation produced by hydroquinone (HQ). Depigmentation was induced by topical application or subcutaneous injection of HQ in black guinea pigs. The present study showed that HQ preferentially affected the nonfollicular and follicular melanocyte system. It caused decreased formation of melanosomes, a marked alteration in the internal structure of melanosomes, an increased degradation of melanosomes , and , finally, a destruction of the membranous organelles in the melanocytes. These findings indicate that HQ affects not only the formation, melanization, and degradation of melanosomes, but that it affects also the membraneous structures of melanocytes and eventually causes necrosis of whole melanocytes

    Inhibition of cytochrome c

    No full text
    corecore