34 research outputs found

    KL-6 concentration in pulmonary epithelial lining fluid is a useful prognostic indicator in patients with acute respiratory distress syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>KL-6 is a mucin-like glycoprotein expressed on the surface of alveolar type II cells. Elevated concentrations of KL-6 in serum and epithelial lining fluid (ELF) in patients with acute respiratory distress syndrome (ARDS) have been previously reported; however, kinetics and prognostic significance of KL-6 have not been extensively studied. This study was conducted to clarify these points in ARDS patients.</p> <p>Methods</p> <p>Thirty-two patients with ARDS who received mechanical ventilation under intubation were studied for 28 days. ELF and blood were obtained from each patient at multiple time points after the diagnosis of ARDS. ELF was collected using a bronchoscopic microsampling procedure, and ELF and serum KL-6 concentrations were measured.</p> <p>Results</p> <p>KL-6 levels in ELF on days 0 to 3 after ARDS diagnosis were significantly higher in nonsurvivors than in survivors, and thereafter, there was no difference in concentrations between the two groups. Serum KL-6 levels did not show statistically significant differences between nonsurvivors and survivors at any time point. When the highest KL-6 levels in ELF and serum sample from each patient were examined, KL-6 levels in both ELF and serum were significantly higher in nonsurvivors than in survivors. The optimal cut-off values were set at 3453 U/mL for ELF and 530 U/mL for serum by receiver operating characteristic (ROC) curve analyses. Patients with KL-6 concentrations in ELF higher than 3453 U/mL or serum concentrations higher than 530 U/mL had significantly lower survival rates up to 90 days after ARDS diagnosis.</p> <p>Conclusions</p> <p>ELF and serum KL-6 concentrations were found to be good indicators of clinical outcome in ARDS patients. Particularly, KL-6 levels in ELF measured during the early period after the diagnosis were useful for predicting prognosis in ARDS patients.</p

    Pediatric cardiorespiratory failure successfully managed with venoarterial-venous extracorporeal membrane oxygenation: a case report

    Get PDF
    Background: Venoarterial-venous extracorporeal membrane oxygenation (VAV ECMO) configuration is a combined procedure of extracorporeal membrane oxygenation (ECMO). The proportion of cardiac and respiratory support can be controlled by adjusting arterial and venous return. Therefore, VAV ECMO can be applicable as a bridging therapy in the transition from venoarterial (VA) to venovenous (VV) ECMO. Case presentation: We present an 11-year-old girl with chemotherapy-induced myocarditis requiring extracorporeal cardiorespiratory support. She showed progressive hypotension, tachycardia, hyperlactemia, and tachypnea under support of catecholamines. Echocardiography showed severe left ventricular hypokinesis with an ejection fraction of 30 %. She was placed on VA ECMO with a drainage catheter from the right femoral vein (19.5 Fr) and a return catheter to the right femoral artery (16.5 Fr). Extracorporeal circulation was initiated at a blood flow of 2.0 L/min (59 mL/kg/min). On day 31, although cardiac function had improved, persistent pulmonary failure made weaning from VA ECMO difficult. We planned transition from VA ECMO to VAV ECMO to ensure gradual tapering of extracorporeal cardiac support while evaluating cardiopulmonary function. An additional return cannula (13.5 Fr) was inserted from the right internal jugular vein, which was connected to the circuit branch from the original returning cannula. We then gradually shifted the blood from the femoral artery to the right internal jugular vein over 24 h. She was successfully switched from VA to VV ECMO via VAV ECMO. Conclusions: VAV ECMO might be an option in ensuring oxygenation to the coronary circulation and allowing time to adequately evaluate cardiac function during transition from VA to VV ECMO. Further investigations using larger cohorts are necessary to validate the efficacy of VAV ECMO as a bridging therapy in the transition from VA to VV ECMO.This work was supported by a JSPS KAKENHI Grant (Number JP 16K09541)

    From Hiroshima and Nagasaki to Fukushima 2: Health effects of radiation and other health problems in the aftermath of nuclear accidents, with an emphasis on Fukushima

    Get PDF
    437 nuclear power plants are in operation at present around the world to meet increasing energy demands. Unfortunately, five major nuclear accidents have occurred in the past--ie, at Kyshtym (Russia [then USSR], 1957), Windscale Piles (UK, 1957), Three Mile Island (USA, 1979), Chernobyl (Ukraine [then USSR], 1986), and Fukushima (Japan, 2011). The effects of these accidents on individuals and societies are diverse and enduring. Accumulated evidence about radiation health effects on atomic bomb survivors and other radiation-exposed people has formed the basis for national and international regulations about radiation protection. However, past experiences suggest that common issues were not necessarily physical health problems directly attributable to radiation exposure, but rather psychological and social effects. Additionally, evacuation and long-term displacement created severe health-care problems for the most vulnerable people, such as hospital inpatients and elderly people
    corecore