1,863 research outputs found

    R\'enyi Bounds on Information Combining

    Full text link
    Bounds on information combining are entropic inequalities that determine how the information, or entropy, of a set of random variables can change when they are combined in certain prescribed ways. Such bounds play an important role in information theory, particularly in coding and Shannon theory. The arguably most elementary kind of information combining is the addition of two binary random variables, i.e. a CNOT gate, and the resulting quantities are fundamental when investigating belief propagation and polar coding. In this work we will generalize the concept to R\'enyi entropies. We give optimal bounds on the conditional R\'enyi entropy after combination, based on a certain convexity or concavity property and discuss when this property indeed holds. Since there is no generally agreed upon definition of the conditional R\'enyi entropy, we consider four different versions from the literature. Finally, we discuss the application of these bounds to the polarization of R\'enyi entropies under polar codes.Comment: 14 pages, accepted for presentation at ISIT 202

    An improved rate region for the classical-quantum broadcast channel

    Full text link
    We present a new achievable rate region for the two-user binary-input classical-quantum broadcast channel. The result is a generalization of the classical Marton-Gelfand-Pinsker region and is provably larger than the best previously known rate region for classical-quantum broadcast channels. The proof of achievability is based on the recently introduced polar coding scheme and its generalization to quantum network information theory.Comment: 5 pages, double column, 1 figure, based on a result presented in the Master's thesis arXiv:1501.0373

    Bounds on Information Combining With Quantum Side Information

    Full text link
    "Bounds on information combining" are entropic inequalities that determine how the information (entropy) of a set of random variables can change when these are combined in certain prescribed ways. Such bounds play an important role in classical information theory, particularly in coding and Shannon theory; entropy power inequalities are special instances of them. The arguably most elementary kind of information combining is the addition of two binary random variables (a CNOT gate), and the resulting quantities play an important role in Belief propagation and Polar coding. We investigate this problem in the setting where quantum side information is available, which has been recognized as a hard setting for entropy power inequalities. Our main technical result is a non-trivial, and close to optimal, lower bound on the combined entropy, which can be seen as an almost optimal "quantum Mrs. Gerber's Lemma". Our proof uses three main ingredients: (1) a new bound on the concavity of von Neumann entropy, which is tight in the regime of low pairwise state fidelities; (2) the quantitative improvement of strong subadditivity due to Fawzi-Renner, in which we manage to handle the minimization over recovery maps; (3) recent duality results on classical-quantum-channels due to Renes et al. We furthermore present conjectures on the optimal lower and upper bounds under quantum side information, supported by interesting analytical observations and strong numerical evidence. We finally apply our bounds to Polar coding for binary-input classical-quantum channels, and show the following three results: (A) Even non-stationary channels polarize under the polar transform. (B) The blocklength required to approach the symmetric capacity scales at most sub-exponentially in the gap to capacity. (C) Under the aforementioned lower bound conjecture, a blocklength polynomial in the gap suffices.Comment: 23 pages, 6 figures; v2: small correction

    Event-Triggered Estimation of Linear Systems: An Iterative Algorithm and Optimality Properties

    Full text link
    This report investigates the optimal design of event-triggered estimation for first-order linear stochastic systems. The problem is posed as a two-player team problem with a partially nested information pattern. The two players are given by an estimator and an event-trigger. The event-trigger has full state information and decides, whether the estimator shall obtain the current state information by transmitting it through a resource constrained channel. The objective is to find an optimal trade-off between the mean squared estimation error and the expected transmission rate. The proposed iterative algorithm alternates between optimizing one player while fixing the other player. It is shown that the solution of the algorithm converges to a linear predictor and a symmetric threshold policy, if the densities of the initial state and the noise variables are even and radially decreasing functions. The effectiveness of the approach is illustrated on a numerical example. In case of a multimodal distribution of the noise variables a significant performance improvement can be achieved compared to a separate design that assumes a linear prediction and a symmetric threshold policy

    Efficient achievability for quantum protocols using decoupling theorems

    Full text link
    Proving achievability of protocols in quantum Shannon theory usually does not consider the efficiency at which the goal of the protocol can be achieved. Nevertheless it is known that protocols such as coherent state merging are efficiently achievable at optimal rate. We aim to investigate this fact further in a general one-shot setting, by considering certain classes of decoupling theorems and give exact rates for these classes. Moreover we compare results of general decoupling theorems using Haar distributed unitaries with those using smaller sets of operators, in particular ϵ\epsilon-approximate 2-designs. We also observe the behavior of our rates in special cases such as ϵ\epsilon approaching zero and the asymptotic limit.Comment: 5 pages, double column, v2: added referenc
    • …
    corecore