3,000 research outputs found

    Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: a review

    Get PDF
    Igneous rocks of the Devonian Kola Alkaline Carbonatite Province (KACP) in NW Russia and eastern Finland can be classified into four groups: (a) primitive mantle-derived silica-undersaturated silicate magmas; (b) evolved alkaline and nepheline syenites; (c) cumulate rocks; (d) carbonatites and phoscorites, some of which may also be cumulates. There is no obvious age difference between these various groups, so all of the magma-types were formed at the same time in a relatively restricted area and must therefore be petrogenetically related. Both sodic and potassic varieties of primitive silicate magmas are present. On major element variation diagrams, the cumulate rocks plot as simple mixtures of their constituent minerals (olivine, clinopyroxene, calcite etc). There are complete compositional trends between carbonatites, phoscorites and silicate cumulates, which suggests that many carbonatites and phoscorites are also cumulates. CaO/Al2O3 ratios for ultramafic and mafic silicate rocks in dykes and pipes range up to 5, indicating a very small degree of melting of a carbonated mantle at depth. Damkjernites appear to be transitional to carbonatites. Trace element modelling indicates that all the mafic silicate magmas are related to small degrees of melting of a metasomatised garnet peridotite source. Similarities of the REE patterns and initial Sr and Nd isotope compositions for ultramafic alkaline silicate rocks and carbonatites indicate that there is a strong relationship between the two magma-types. There is also a strong petrogenetic link between carbonatites, kimberlites and alkaline ultramafic lamprophyres. Fractional crystallisation of olivine, diopside, melilite and nepheline gave rise to the evolved nepheline syenites, and formed the ultramafic cumulates. All magmas in the KACP appear to have originated in a single event, possibly triggered by the arrival of hot material (mantle plume?) beneath the Archaean/Proterozoic lithosphere of the northern Baltic Shield that had been recently metasomatised. Melting of the carbonated garnet peridotite mantle formed a spectrum of magmas including carbonatite, damkjernite, melilitite, melanephelinite and ultramafic lamprophyre. Pockets of phlogopite metasomatised lithospheric mantle also melted to form potassic magmas including kimberlite. Depth of melting, degree of melting and presence of metasomatic phases are probably the major factors controlling the precise composition of the primary melts formed

    Mafic alkaline metasomatism in the lithosphere underneath East Serbia: evidence from the study of xenoliths and the host alkali basalts

    Get PDF
    Effects of mafic alkaline metasomatism have been investigated by a combined study of the East Serbian mantle xenoliths and their host alkaline rocks. Fertile xenoliths and tiny mineral assemblages found in depleted xenoliths have been investigated. Fertile lithologies are represented by clinopyroxene (cpx)-rich lherzolite and spinel (sp)-rich olivine websterite containing Ti–Al-rich Cr-augite, Fe-rich olivine, Fe–Al-rich orthopyroxene and Al-rich spinel. Depleted xenoliths, which are the predominant lithology in the suite of East Serbian xenoliths, are harzburgite, cpx-poor lherzolite and rare Mg-rich dunite. They contain small-scale assemblages occurring as pocket-like, symplectitic or irregular, deformation-assisted accumulations of metasomatic phases, generally composed of Ti–Al- and incompatible element-rich Cr-diopside, Cr–Fe–Ti-rich spinel, altered glass, olivine, apatite, ilmenite, carbonate, feldspar, and a high-TiO2 (c. 11 wt%) phlogopite. The fertile xenoliths are too rich in Al, Ca and Fe to simply represent undepleted mantle. By contrast, their composition can be reproduced by the addition of 5–20 wt% of a basanitic melt to refractory mantle. However, textural relationships found in tiny mineral assemblages inside depleted xenoliths imply the following reaction: opx+sp1 (primary mantle Cr-spinel) ±phlogopite+Si-poor alkaline melt=Ti–Al-cpx+sp2 (metasomatic Ti-rich spinel)±ol±other minor phases. Inversion modelling, performed on the least contaminated and most isotopically uniform host basanites (87Sr/86Sr=c. 0.7031; 143Nd/144Nd=c. 0.5129), implies a source that was enriched in highly and moderately incompatible elements (c. 35–40× chondrite for U–Th–Nb–Ta, 2× chondrite for heavy rare earth elements (HREE), made up of clinopyroxene, carbonate (c. 5%), and traces of ilmenite (c. 1%) and apatite (c. 0.05%). A schematic model involves: first, percolation of CO2- and H2O-rich fluids and precipitation of metasomatic hydrous minerals; and, second, the subsequent breakdown of these hydrous minerals due to the further uplift of hot asthenospheric mantle. This model links intraplate alkaline magmatism to lithospheric mantle sources enriched by sublithospheric melts at some time in the past

    EFFECTS OF ISOFLAVONES ON THE SPERMATOGENISIS OF PREPUBERAL BOVINE BULLS

    Get PDF
    Several studies have been conducted over the effects of isoflavones on health and reproductive parameters of small rodent and humans due to the wide range of proposed negative and positive effects that isoflavones can have. This study was conducted on 39 prepuberal bovine Angus bulls, stratified by weaning weight, sire, and age of dam (AOD) to one of two study diets (DIET) which consisted of Soybean meal treatment group (SBMTRT) or Cottonseed meal control group (CSMCON). The purpose of this study was to investigate average daily gain (ADG), scrotal circumference (SC) and sperm production and morphology. There were profound effects observed with DIET × AOD on ADG in the 3 year and 2 year AOD groups, and semen concentration and volume differences were observed within the 3 yr AOD. All AOD in the CSM groups were significantly lower in all aspects of semen quality and ADG

    Understanding household preferences for alternative-fuel vehicles technologies

    Get PDF
    This report explores consumer preferences among four different alternative-fuel vehicles (AFVs): hybrid electric vehicles (HEVs), compressed natural gas (CNG) vehicles, hydrogen fuel cell (HFC) vehicles, and electric vehicles (EVs). Although researchers have been interested in understanding consumer preferences for AFVs for more than three decades, it is important to update our estimates of the trade-offs people are willing to make between cost, environmental performance, vehicle range, and refueling convenience. We conducted a nationwide, Internet-based survey to assess consumer preferences for AFVs. Respondents participated in a stated-preference ranking exercise in which they ranked a series of five vehicles (four AFVs and a traditional gasoline-fueled vehicle) that differ primarily in fuel type, price, environmental performance, vehicle range, and refueling convenience. Our findings indicate that, in general, gasoline-fueled vehicles are still preferred over AFVs, however there is a strong interest in AFVs. No AFV type is overwhelmingly preferred, although HEVs seem to have an edge. Using a panel rank-ordered mixed logit model, we assessed the trade-offs people make between key AFV characteristics. We found that, in order to leave a person’s utility unchanged, a 1,000increaseinAFVcostneedstobecompensatedbyeither:(1)a1,000 increase in AFV cost needs to be compensated by either: (1) a 300 savings in driving cost over 12,000 miles; (2) a 17.5 mile increase in vehicle range; or (3) a 7.8-minute decrease in total refueling time (e.g. finding a gas station and refueling)

    Influence of biological carbon export on ocean carbon uptake over the annual cycle across the North Pacific Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 31 (2017): 81–95, doi:10.1002/2016GB005527.We evaluate the influences of biological carbon export, physical circulation, and temperature-driven solubility changes on air-sea CO2 flux across the North Pacific basin (35°N–50°N, 142°E–125°W) throughout the full annual cycle by constructing mixed layer budgets for dissolved inorganic carbon (DIC) and pCO2, determined on 15 container ship transects between Hong Kong and Long Beach, CA, from 2008 to 2012. Annual air-sea CO2 flux is greatest in the western North Pacific and decreases eastward across the basin (2.7 ± 0.9 mol C m−2 yr−1 west of 170°E, as compared to 2.1 ± 0.3 mol C m−2 yr−1 east of 160°W). East of 160°W, DIC removal by annual net community production (NCP) more than fully offsets the DIC increase due to air-sea CO2 flux. However, in the region west of 170°E influenced by deep winter mixing, annual NCP only offsets ~20% of the DIC increase due to air-sea CO2 flux, requiring significant DIC removal by geostrophic advection. Temperature-driven solubility changes have no net influence on pCO2 and account for <25% of annual CO2 uptake. The seasonal timing of NCP strongly affects its influence on air-sea CO2 flux. Biological carbon export from the mixed layer has a stronger influence on pCO2 in summer when mixed layers are shallow, but changes in pCO2 have a stronger influence on air-sea CO2 flux in winter when high wind speeds drive more vigorous gas exchange. Thus, it is necessary to determine the seasonal timing as well as the annual magnitude of NCP to determine its influence on ocean carbon uptake.NDSEG Fellowship from the Office of Naval Research; NSF Graduate Research Fellowship; NSF Ocean Sciences Grant Numbers: 0628663, 1259055; NOAA Climate Program Office Grant Number: A10OAR43100882017-07-2

    Is Human Papillomavirus (HPV)-associated Esophageal Cancer due to Oral Sex?

    Get PDF
    N/

    Elevated ACKR2 expression is a common feature of inflammatory arthropathies

    Get PDF
    Objectives. Chemokines are essential contributors to leucocyte accumulation at sites of inflammatory pathology. Interfering with chemokine or chemokine receptor function therefore represents a plausible therapeutic option. However, our currently limited understanding of chemokine orchestration of inflammatory responses means that such therapies have not yet been fully developed. We have a particular interest in the family of atypical chemokine receptors that fine-tune, or resolve, chemokine-driven responses. In particular we are interested in atypical chemokine receptor 2 (ACKR2), which is a scavenging receptor for inflammatory CC-chemokines and that therefore helps to resolve in vivo inflammatory responses. The objective of the current study was to examine ACKR2 expression in common arthropathies. Methods. ACKR2 expression was measured by a combination of qPCR and immuno-histochemistry. In addition, circulating cytokine and chemokine levels in patient plasma were assessed using multiplexing approaches. Results. Expression of ACKR2 was elevated on peripheral blood cells as well as on leucocytes and stromal cells in synovial tissue. Expression on peripheral blood leucocytes correlated with, and could be regulated by, circulating cytokines with particularly strong associations being seen with IL-6 and hepatocyte growth factor. In addition, expression within the synovium was coincident with aggregates of lymphocytes, potentially atopic follicles and sites of high inflammatory chemokine expression. Similarly increased levels of ACKR2 have been reported in psoriasis and SSc. Conclusion. Our data clearly show increased ACKR2 in a variety of arthropathies and taking into account our, and others’, previous data we now propose that elevated ACKR2 expression is a common feature of inflammatory pathologies

    Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton

    Get PDF
    Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountains volcanic field (Montana, USA), derived from the lower lithosphere of the Wyoming craton, can be divided based on textural criteria into tectonite and cumulate groups. The tectonites consist of strongly depleted spinel lherzolites, harzburgites and dunites. Although their mineralogical compositions are generally similar to those of spinel peridotites in off-craton settings, some contain pyroxenes and spinels that have unusually low Al2O3 contents more akin to those found in cratonic spinel peridotites. Furthermore, the tectonite peridotites have whole-rock major element compositions that tend to be significantly more depleted than non-cratonic mantle spinel peridotites (high MgO, low CaO, Al2O3 and TiO2) and resemble those of cratonic mantle. These compositions could have been generated by up to 30% partial melting of an undepleted mantle source. Petrographic evidence suggests that the mantle beneath the Wyoming craton was re-enriched in three ways: (1) by silicate melts that formed mica websterite and clinopyroxenite veins; (2) by growth of phlogopite from K-rich hydrous fluids; (3) by interaction with aqueous fluids to form orthopyroxene porphyroblasts and orthopyroxenite veins. In contrast to their depleted major element compositions, the tectonite peridotites are mostly light rare earth element (LREE)-enriched and show enrichment in fluid-mobile elements such as Cs, Rb, U and Pb on mantle-normalized diagrams. Lack of enrichment in high field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf) suggests that the tectonite peridotites have been metasomatized by a subduction-related fluid. Clinopyroxenes from the tectonite peridotites have distinct U-shaped REE patterns with strong LREE enrichment. They have 143Nd/144Nd values that range from 0·5121 (close to the host minette values) to 0·5107, similar to those of xenoliths from the nearby Highwood Mountains. Foliated mica websterites also have low 143Nd/144Nd values (0·5113) and extremely high 87Sr/86Sr ratios in their constituent phlogopite, indicating an ancient (probably mid-Proterozoic) enrichment. This enriched mantle lithosphere later contributed to the formation of the high-K Eocene host magmas. The cumulate group ranges from clinopyroxene-rich mica peridotites (including abundant mica wehrlites) to mica clinopyroxenites. Most contain >30% phlogopite. Their mineral compositions are similar to those of phenocrysts in the host minettes. Their whole-rock compositions are generally poorer in MgO but richer in incompatible trace elements than those of the tectonite peridotites. Whole-rock trace element patterns are enriched in large ion lithophile elements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb, Ta Zr and Hf) as in the host minettes, and their Sr–Nd isotopic compositions are also identical to those of the minettes. Their clinopyroxenes are LREE-enriched and formed in equilibrium with a LREE-enriched melt closely resembling the minettes. The cumulates therefore represent a much younger magmatic event, related to crystallization at mantle depths of minette magmas in Eocene times, that caused further metasomatic enrichment of the lithosphere

    Voices of dissent in the age of emperor Kennett

    Full text link
    Celebrates the company\u27s artistic achievements and successes over the last two decades through interviews, essays and high quality images of key productions, and recounts its history, its evolving relationship with the embattled trade union movement, and its on-going engagement with working class, indigenous and migrant communities.<br /
    corecore