235 research outputs found
A gamma ray monitor for the OSO-7 spacecraft
A 3 in. x 3 in. NaI(Tl) gamma ray (0.3 to 10 MeV) spectrometer with a CsI(Na) charged particle and anti-Compton shield has been developed for the Orbiting Solar Observatory (OSO-7) which was launched September 30, 1971. The instrument, designed for a rotating wheel compartment, utilizes a 377 channel quadratic PHA with accumulation times of 3, 1, or 0.5 minutes. Quick look and calibration data obtained via a direct data link to a minicomputer allows near real time monitoring and control of the experiment. Various commands changing the operating mode can be executed. The functions which can be commanded include: rotation of the quadrants in which data is collected by 90 deg; gain adjustment of the central detector over a 6:1 range; manual or automatic sequencing of calibrations; variations of accumulation times by telemetering selected channels; and selection of reference directions. A small X-ray detector covering the range 7.5 to 120 keV is also included
Coherence-enhanced imaging of a degenerate Bose gas
We present coherence-enhanced imaging, an in situ technique that uses Raman
superradiance to probe the spatial coherence properties of an ultracold gas.
Applying this method, we obtain a spatially resolved measurement of the
condensate number and more generally, of the first-order spatial correlation
function in a gas of Rb atoms. We observe the enhanced decay of
propagating spin gratings in high density regions of a Bose condensate, a decay
we ascribe to collective, non-linear atom-atom scattering. Further, we directly
observe spatial inhomogeneities that arise generally in the course of extended
sample superradiance.Comment: 4 pages, 4 figure
Relativistic magnetospheric electrons: Lower ionospheric conductivity and long-term atmospheric variability
Long term observations of relativistic electrons in the earth's outer magnetosphere show a strong solar cycle dependence with a prominent intensity maximum during the approach to solar minimum. This population therefore closely corresponds to the presence of high speed solar wind streams emanating from solar coronal holes. Using a numerical code, the precipitating electron energy deposition in the earth's upper and middle atmosphere were calculated. Observed events (typically persisting several days) would have maximum effect in the 40 to 60 km altitude range with peak energy depositions greater than 110 keV/cu cm-s. It is suggested that this electron population could play an important long term role in modulating lower D region ionization and middle atmospheric ozone chemistry. Methods are described of observing middle atmospheric and lower ionospheric effects of the electrons including balloon, riometer, and space-based ozone sensor systems. A particularly promising approach may involve the monitoring of global Schumann resonance modes which are sensitive to global changes in the properties of the earth-ionosphere cavity. Present work indicates that Schumann resonance properties are moderately correlated with the flux of precipitating relativistic electrons thus offering the possibility of continuously monitoring this aspect of magnetosphere-atmosphere coupling
- …