714 research outputs found

    Primitive roles for inhibitory interneurons in developing frog spinal cord

    Get PDF
    Understanding the neuronal networks in the mammal spinal cord is hampered by the diversity of neurons and their connections. The simpler networks in developing lower vertebrates may offer insights into basic organization. To investigate the function of spinal inhibitory interneurons in Xenopus tadpoles, paired whole-cell recordings were used. We show directly that one class of interneuron, with distinctive anatomy, produces glycinergic, negative feedback inhibition that can limit firing in motoneurons and interneurons of the central pattern generator during swimming. These same neurons also produce inhibitory gating of sensory pathways during swimming. This discovery raises the possibility that some classes of interneuron, with distinct functions later in development, may differentiate from an earlier class in which these functions are shared. Preliminary evidence suggests that these inhibitory interneurons express the transcription factor engrailed, supporting a probable homology with interneurons in developing zebrafish that also express engrailed and have very similar anatomy and functions

    Chiral phase transition at high temperature in the QCD-like gauge theory

    Get PDF
    The chiral phase transition at high temperature is investigated using the effect ive potential in the framework of the QCD-like gauge theory with a variational a pproach. We have a second order phase transition at Tc=136T_c=136MeV. We also investigate numerically the temperature dependence of condensate, fπf_\pi a nd a2(T)a_2(T)(coefficient of the quadratic term in the effective potential) and es timate the critical exponents of these quantities.Comment: 12 pages,7 figure

    Anomaly-Free Supersymmetric SO(2N+2)/U(N+1) sigma-Model Based on the SO(2N+1) Lie Algebra of the Fermion Operators

    Full text link
    The extended supersymmetric (SUSY) sigma-model has been proposed on the bases of SO(2N+1) Lie algebra spanned by fermion annihilation-creation operators and pair operators. The canonical transformation, extension of an SO(2N) Bogoliubov transformation to an SO(2N+1) group, is introduced. Embedding the SO(2N+1) group into an SO(2N+2) group and using SO(2N+2)/U(N+1) coset variables, we have investigated the SUSY sigma-model on the Kaehler manifold, the coset space SO(2N+2)/U(N+1). We have constructed the Killing potential, extension of the potential in the SO(2N)/U(N) coset space to that in the SO(2N+2)/U(N+1) coset space. It is equivalent to the generalized density matrix whose diagonal-block part is related to a reduced scalar potential with a Fayet-Ilipoulos term. The f-deformed reduced scalar potential is optimized with respect to vacuum expectation value of the sigma-model fields and a solution for one of the SO(2N+1) group parameters has been obtained. The solution, however, is only a small part of all solutions obtained from anomaly-free SUSY coset models. To construct the coset models consistently, we must embed a coset coordinate in an anomaly-free spinor representation (rep) of SO(2N+2) group and give corresponding Kaehler and Killing potentials for an anomaly-free SO(2N+2)/U(N+1) model based on each positive chiral spinor rep. Using such mathematical manipulation we construct successfully the anomaly-free SO(2N+2)/U(N+1) SUSY sigma-model and investigate new aspects which have never been seen in the SUSY sigma-model on the Kaehler coset space SO(2N)/U(N). We reach a f-deformed reduced scalar potential. It is minimized with respect to the vacuum expectation value of anomaly-free SUSY sigma-model fields. Thus we find an interesting f-deformed solution very different from the previous solution for an anomaly-free SO(2.5+2)/(SU(5+1)*U(1)) SUSY sigma-model.Comment: 24 pages, no fiure

    Universality, the QCD critical/tricritical point and the quark number susceptibility

    Get PDF
    The quark number susceptibility near the QCD critical end-point (CEP), the tricritical point (TCP) and the O(4) critical line at finite temperature and quark chemical potential is investigated. Based on the universality argument and numerical model calculations we propose a possibility that the hidden tricritical point strongly affects the critical phenomena around the critical end-point. We made a semi-quantitative study of the quark number susceptibility near CEP/TCP for several quark masses on the basis of the Cornwall-Jackiw-Tomboulis (CJT) potential for QCD in the improved-ladder approximation. The results show that the susceptibility is enhanced in a wide region around CEP inside which the critical exponent gradually changes from that of CEP to that of TCP, indicating a crossover of different universality classes.Comment: 18 pages, 10 figure

    Trace anomaly induced effective action and 2d black holes for dilaton coupled supersymmetric theories

    Full text link
    The action for 2d dilatonic supergravity with dilaton coupled matter and dilaton multiplets is constructed. Trace anomaly and anomaly induced effective action (in components as well as in supersymmetric form) for matter supermultiplet on bosonic background are found. The one-loop effective action and large-NN effective action for quantum dilatonic supergravity are also calculated. Using induced effective action one can estimate the back-reaction of dilaton coupled matter to the classical black hole solutions of dilatonic supergravity. That is done on the example of supersymmetric CGHS model with dilaton coupled quantum matter where Hawking radiation which turns out to be zero is calculated. Similar 2d analysis maybe used to study spherically symmetric collapse for other models of 4d supergravity.Comment: 21 pages, LaTeX, NDA-FP-3

    Current quark mass effects on chiral phase transition of QCD in the improved ladder approximation

    Get PDF
    Current quark mass effects on the chiral phase transition of QCD is studied in the improved ladder approximation. An infrared behavior of the gluon propagator is modified in terms of an effective running coupling. The analysis is based on a composite operator formalism and a variational approach. We use the Schwinger-Dyson equation to give a ``normalization condition'' for the Cornwall-Jackiw-Tomboulis effective potential and to isolate the ultraviolet divergence which appears in an expression for the quark-antiquark condensate. We study the current quark mass effects on the order parameter at zero temperature and density. We then calculate the effective potential at finite temperature and density and investigate the current quark mass effects on the chiral phase transition. We find a smooth crossover for T>0T>0, ÎŒ=0\mu=0 and a first-order phase transition for ÎŒ>0\mu>0, T=0. Critical exponents are also studied and our model gives the classical mean-field values. We also study the temperature dependence of masses of scalar and pseudoscalar bosons. A critical end point in the TT-ÎŒ\mu plane is found at T∌100T \sim 100 MeV, Ό∌300\mu \sim 300 MeV.Comment: 19 pages, 13 figure

    Quantum cosmology in the models of 2d and 4d dilatonic supergravity with WZ matter

    Get PDF
    We consider N=1 two-dimensional (2d) dilatonic supergravity (SG), 2d dilatonic SG obtained by dimensional reduction from N=1 four-dimensional (4d) SG, N=2 2d dilatonic SG and string-inspired 4d dilatonic SG. For all the theories, the corresponding action on a bosonic background is constructed and the interaction with NN (dilatonic) Wess-Zumino (WZ) multiplets is presented. Working in the large-N approximation, it is enough to consider the trace anomaly induced effective action due to dilaton-coupled conformal matter as a quantum correction (for 2d models s-waves approximation is additionally used). The equations of motion for all such models with quantum corrections are written in a form convenient for numerical analysis. Their solutions are numerically investigated for 2d and 4d Friedmann-Robertson-Walker (FRW) or 4d Kantowski-Sacks Universes with a time-dependent dilaton via exponential dilaton coupling. The evolution of the corresponding quantum cosmological models is given for different choices of initial conditions and theory parameters. In most cases we find quantum singular Universes. Nevertheless, there are examples of Universe non-singular at early times. Hence, it looks unlikely that quantum matter back reaction on dilatonic background (at least in large NN approximation) may really help to solve the singularity problem.Comment: LaTeX file of the text (36 pages) and 3 ps files of 14 figures, few misprints are corrected and references adde
    • 

    corecore