53 research outputs found

    Production of nanoparticles from natural hydroxylapatite by laser ablation

    Get PDF
    Laser ablation of solids in liquids technique has been used to obtain colloidal nanoparticles from biological hydroxylapatite using pulsed as well as a continuous wave (CW) laser. Transmission electron microscopy (TEM) measurements revealed the formation of spherical particles with size distribution ranging from few nanometers to hundred nanometers and irregular submicronic particles. High resolution TEM showed that particles obtained by the use of pulsed laser were crystalline, while those obtained by the use of CW laser were amorphous. The shape and size of particles are consistent with the explosive ejection as formation mechanism

    Preliminary Clinical Evaluation of Short Fiber-Reinforced Composite Resin in Posterior Teeth: 12-Months Report

    Get PDF
    This preliminary clinical trial evaluated 12 month clinical performance of novel filling composite resin system which combines short fiber-reinforced composite resin and conventional particulate filler composite resin in high stress bearing applications. A total of 37 class I and II restorations (compound and complex type) were placed in 6 premolars and 31 molars. The restorations were reviewed clinically at 6 months (baseline) and 12 months using modified USPHS codes change criteria for marginal adaptation, post-operative sensitivity, pulpal pain and secondary caries criteria. Photographs and x-rays were obtained for restorative analysis. Results of 12 months evaluation showed 5 restorations having little marginal leakage (B score) and 1 patient had minor pulpal symptom and post-operative sensitivity (B score). No secondary caries or bulk fracture was detected. The majority of restorations exhibited A scores of the evaluated criteria. After 12 months, restorations combining base of short fiber reinforced composite resin as substructure and surface layer of hybrid composite resin displayed promising performance in high load bearing areas

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    Novel CaF2 Nanocomposite with High Strength and Fluoride Ion Release

    No full text
    Secondary caries and restoration fracture remain common problems in dentistry. This study tested the hypothesis that combining nano-CaF2 and glass fillers would yield nanocomposites with high mechanical properties and F release. Novel CaF2 nanoparticles (56-nm) were synthesized via spray-drying and incorporated into resin. F release increased with increasing the nano-CaF2 content, or with decreasing pH (p < 0.05). F-release rates at 70-84 days were 1.13 µg/(cm2·day) and 0.50 µg/(cm2·day) for nanocomposites containing 30% and 20% nano-CaF2, respectively. They matched the 0.65 µg/(cm2·day) of resin-modified glass ionomer (p > 0.1). The nanocomposites had flexural strengths of 70-120 MPa, after 84-day immersion at pH 4, pH 5.5, and pH 7. These strengths were nearly three-fold that of resin-modified glass ionomer, and matched/exceeded a composite with little F release. In summary, novel CaF2 nanoparticles produced high F release at low filler levels, thereby making room in resin for reinforcement glass. This yielded nanocomposites with high F-release and stress-bearing properties, which may help reduce secondary caries and restoration fracture
    • …
    corecore