39 research outputs found

    How Protein Stability and New Functions Trade Off

    Get PDF
    Numerous studies have noted that the evolution of new enzymatic specificities is accompanied by loss of the protein's thermodynamic stability (ΔΔG), thus suggesting a tradeoff between the acquisition of new enzymatic functions and stability. However, since most mutations are destabilizing (ΔΔG>0), one should ask how destabilizing mutations that confer new or altered enzymatic functions relative to all other mutations are. We applied ΔΔG computations by FoldX to analyze the effects of 548 mutations that arose from the directed evolution of 22 different enzymes. The stability effects, location, and type of function-altering mutations were compared to ΔΔG changes arising from all possible point mutations in the same enzymes. We found that mutations that modulate enzymatic functions are mostly destabilizing (average ΔΔG = +0.9 kcal/mol), and are almost as destabilizing as the “average” mutation in these enzymes (+1.3 kcal/mol). Although their stability effects are not as dramatic as in key catalytic residues, mutations that modify the substrate binding pockets, and thus mediate new enzymatic specificities, place a larger stability burden than surface mutations that underline neutral, non-adaptive evolutionary changes. How are the destabilizing effects of functional mutations balanced to enable adaptation? Our analysis also indicated that many mutations that appear in directed evolution variants with no obvious role in the new function exert stabilizing effects that may compensate for the destabilizing effects of the crucial function-altering mutations. Thus, the evolution of new enzymatic activities, both in nature and in the laboratory, is dependent on the compensatory, stabilizing effect of apparently “silent” mutations in regions of the protein that are irrelevant to its function

    Prediction of diabetic retinopathy: role of oxidative stress and relevance of apoptotic biomarkers

    Full text link

    Nutritional supplement practices of professional Ugandan athletes: a cross-sectional study

    No full text
    Abstract Background The use of nutritional supplements (NS) places athletes at great risk for inadvertent doping. Due to the paucity of data on supplement use, this study aimed to determine the proportion of Ugandan athletes using nutritional supplements and to investigate the athletes’ motivation to use these supplements. Methods A cross-sectional study was conducted in which an interviewer-administered questionnaire was used to collect data from 359 professional athletes participating in individual (boxing, cycling, athletics) and team (basketball, rugby, football, netball, and volleyball) sports. The data were categorized, and a Chi-square test was used for statistical analysis. Results Of the 359 athletes, 48 (13.4%) used nutritional supplements. Carbohydrate supplements, energy drinks, vitamin and mineral supplements, fish oils, and protein supplements were the most common supplements used by athletes. NS use was significantly more common among athletes who played rugby and basketball (X 2 = 61.101, p < 0.0001), athletes who had played the sport for 5-10 years (X 2 = 7.460, p = 0.024), and athletes who had attained a tertiary education (X 2 = 33.377, p < 0.0001). The athletes’ occupation had no bearing on whether they used supplements. Nutritionists/dieticians, retail stores and pharmacies were the most common sources of NS products, whereas health practitioners, online media and teammates were the most common sources of information regarding NS. Most athletes used NS to improve their physical performance and health. Conclusions Compared to NS use by athletes elsewhere, NS use among Ugandan athletes was low. However, determinants of athlete NS use in the current study (category of sport and duration of time spent playing the sport) are similar to those reported elsewhere
    corecore