10 research outputs found
Electrochemically synthesized polymers in molecular imprinting for chemical sensing
This critical review describes a class of polymers prepared by electrochemical polymerization that employs the concept of molecular imprinting for chemical sensing. The principal focus is on both conducting and nonconducting polymers prepared by electropolymerization of electroactive functional monomers, such as pristine and derivatized pyrrole, aminophenylboronic acid, thiophene, porphyrin, aniline, phenylenediamine, phenol, and thiophenol. A critical evaluation of the literature on electrosynthesized molecularly imprinted polymers (MIPs) applied as recognition elements of chemical sensors is presented. The aim of this review is to highlight recent achievements in analytical applications of these MIPs, including present strategies of determination of different analytes as well as identification and solutions for problems encountered
Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury
Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOO(-)) in ischemic brain, which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO(-) to treat ischemic stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-reperfusion injury.link_to_OA_fulltex
Mechanistic, mechanistic-based empirical, and continuum-based concepts and models for the transport of polyelectrolyte-modified nanoscale zerovalent iron (NZVI) in saturated porous media
Controlled emplacement of polyelectrolyte-modified NZVI at a high particle concentration (1–10 g/L) is needed for effective in situ subsurface remediation. For this reason, a modeling tool capable of predicting polyelectrolyte-modified NZVI transport is imperative. However, the deep bed filtration theory is invalid for this purpose because several phenomena governing the transport of polyelectrolyte-modified NZVI in saturated porous media, including detachment, particle agglomeration, straining, and porous media ripening, violate the fundamental assumption of such a classical theory. Thus, this chapter critically reviews the literature of each phenomenon with various kinds of nanoparticles with a special focus on polyelectrolyte-modified NZVI. Then, each phenomenon is elaborated using three kinds of mathematical models, including mechanistic (such as extended DLVO theory), mechanistic-based empirical (correlations to predict NZVI agglomeration and deposition), and continuum-based (Eulerian continuum-based models). These proposed modeling tools can be applied at various scales from column experiments (1-D) to field-scaled operations (3-D) for designing NZVI injection and emplacement in the subsurface