22 research outputs found

    Fever as a Cause of Hypophosphatemia in Patients with Malaria

    Get PDF
    Hypophosphatemia occurs in 40 to 60% of patients with acute malaria, and in many other conditions associated with elevations of body temperature. To determine the prevalence and causes of hypophosphatemia in patients with malaria, we retrospectively studied all adults diagnosed with acute malaria during a 12-year period. To validate our findings, we analyzed a second sample of malaria patients during a subsequent 10-year period. Serum phosphorus correlated inversely with temperature (n = 59, r = −0.62; P<0.0001), such that each 1°C increase in body temperature was associated with a reduction of 0.18 mmol/L (0.56 mg/dL) in the serum phosphorus level (95% confidence interval: −0.12 to −0.24 mmol/L [−0.37 to −0.74 mg/dL] per 1°C). A similar effect was observed among 19 patients who had repeat measurements of serum phosphorus and temperature. In a multiple linear regression analysis, the relation between temperature and serum phosphorus level was independent of blood pH, PCO2, and serum levels of potassium, bicarbonate, calcium, albumin, and glucose. Our study demonstrates a strong inverse linear relation between body temperature and serum phosphorus level that was not explained by other factors known to cause hypophosphatemia. If causal, this association can account for the high prevalence of hypophosphatemia, observed in our patients and in previous studies of patients with malaria. Because hypophosphatemia has been observed in other clinical conditions characterized by fever or hyperthermia, this relation may not be unique to malaria. Elevation of body temperature should be added to the list of causes of hypophosphatemia

    The role of leptin in the respiratory system: an overview

    Get PDF
    Since its cloning in 1994, leptin has emerged in the literature as a pleiotropic hormone whose actions extend from immune system homeostasis to reproduction and angiogenesis. Recent investigations have identified the lung as a leptin responsive and producing organ, while extensive research has been published concerning the role of leptin in the respiratory system. Animal studies have provided evidence indicating that leptin is a stimulant of ventilation, whereas researchers have proposed an important role for leptin in lung maturation and development. Studies further suggest a significant impact of leptin on specific respiratory diseases, including obstructive sleep apnoea-hypopnoea syndrome, asthma, COPD and lung cancer. However, as new investigations are under way, the picture is becoming more complex. The scope of this review is to decode the existing data concerning the actions of leptin in the lung and provide a detailed description of leptin's involvement in the most common disorders of the respiratory system
    corecore