19 research outputs found

    History and evolution of the arctic flora: in the footsteps of Eric Hultén

    No full text
    A major contribution to our initial understanding of the origin, history and biogeography of the present-day arctic flora was made by Eric Hulten in his landmark book Outline of the History of Arctic and Boreal Biota during the Quarternary Period, published in 1937. Here we review recent molecular and fossil evidence that has tested some of Hulten's proposals. There is now excellent fossil, molecular and phytogeographical evidence to support Hulten's proposal that Beringia was a major northern refugium for arctic plants throughout the Quaternary. In contrast, most molecular evidence fails to support his proposal that contemporary east and west Atlantic populations of circumarctic and amphi-Atlantic species have been separated throughout the Quaternary. In fact, populations of these species from opposite sides of the Atlantic are normally genetically very similar, thus the North Atlantic does not appear to have been a strong barrier to their dispersal during the Quaternary. Hulten made no detailed proposals on mechanisms of speciation in the Arctic; however, molecular studies have confirmed that many arctic plants are allopolyploid, and some of them most probably originated during the Holocene. Recurrent formation of polyploids from differentiated diploid or more low-ploid populations provides one explanation for the intriguing taxonomic complexity of the arctic flora, also noted by Hulten. In addition, population fragmentation during glacial periods may have lead to the formation of new sibling species at the diploid level. Despite the progress made since Hulten wrote his book, there remain large gaps in our knowledge of the history of the arctic flora, especially about the origins of the founding stocks of this flora which first appeared in the Arctic at the end of the Pliocene (approximately 3 Ma). Comprehensive analyses of the molecular phylogeography of arctic taxa and their relatives together with detailed fossil studies are required to fill these gaps.</p

    Empirical Evidence Supporting Frequent Cryptic Speciation in Epiphyllous Liverworts: A Case Study of the Cololejeunea lanciloba Complex

    Get PDF
    Cryptic species are frequently recovered in plant lineages, and considered an important cause for divergent of morphological disparity and species diversity. The identification of cryptic species has important implications for the assessment of conservation needs of species aggregates. The mechanisms and processes of the origin of cryptic species diversity are still poorly understand based on the lack of studies especially in context of environment factors. Here we explored evidence for cryptic species within the epiphyllous liverworts Cololejeunea lanciloba complex based on two loci, the plastid trnL-F region and the nuclear ribosomal ITS region. Several analytic approaches were employed to delimit species based on DNA sequence variation including phylogenetic reconstruction, statistical parsimony networks analysis and two recently introduced species delimitation criteria: Rosenberg’s reciprocal monophyly and Rodrigo’s randomly distinct. We found evidence for thirteen genetically distinct putative species, each consisting of more than one haplotype, rather than four morphologically-circumscribed species. The results implied that the highly conserved phenotypes are not congruent with the genetic differentiation, contributing to incorrect assessments of the biodiversity of epiphyllous liverworts. We hypothesize that evolution of cryptic species recovered may be caused by selection of traits critical to the survival in epiphyllous habitats combined with limited developmental options designed in the small body
    corecore