79 research outputs found

    Ecological and Behavioural Correlates of Intracellular Buffering Capacity in the Muscles of Antarctic Fishes

    Get PDF
    Five species of antarctic fishes can be arranged in order of increasing anaerobic capacity of the white muscles for burst swimming: Rhigophila dearborni (Zoarcidae), icefish (Channichthyidae), Dissostichus mawsoni, Trematomus centronotus, and Pagothenia borchgrevinki (Nototheniidae). This order reflects in-creasing dependence on anaerobic work done during short bursts of speed during prey capture or predator avoidance. Buffer capacity (beta) for white muscle was lower than that of behaviourally equivalent fish from lower latitudes and beta is itself temperature-dependent

    Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We employed a phylogenetic framework to identify patterns of life habit evolution in the marine bivalve family Pectinidae. Specifically, we examined the number of independent origins of each life habit and distinguished between convergent and parallel trajectories of life habit evolution using ancestral state estimation. We also investigated whether ancestral character states influence the frequency or type of evolutionary trajectories.</p> <p>Results</p> <p>We determined that temporary attachment to substrata by byssal threads is the most likely ancestral condition for the Pectinidae, with subsequent transitions to the five remaining habit types. Nearly all transitions between life habit classes were repeated in our phylogeny and the majority of these transitions were the result of parallel evolution from byssate ancestors. Convergent evolution also occurred within the Pectinidae and produced two additional gliding clades and two recessing lineages. Furthermore, our analysis indicates that byssal attaching gave rise to significantly more of the transitions than any other life habit and that the cementing and nestling classes are only represented as evolutionary outcomes in our phylogeny, never as progenitor states.</p> <p>Conclusions</p> <p>Collectively, our results illustrate that both convergence and parallelism generated repeated life habit states in the scallops. Bias in the types of habit transitions observed may indicate constraints due to physical or ontogenetic limitations of particular phenotypes.</p

    Molecular pedomorphism underlies craniofacial skeletal evolution in Antarctic notothenioid fishes

    Get PDF
    Background Pedomorphism is the retention of ancestrally juvenile traits by adults in a descendant taxon. Despite its importance for evolutionary change, there are few examples of a molecular basis for this phenomenon. Notothenioids represent one of the best described species flocks among marine fishes, but their diversity is currently threatened by the rapidly changing Antarctic climate. Notothenioid evolutionary history is characterized by parallel radiations from a benthic ancestor to pelagic predators, which was accompanied by the appearance of several pedomorphic traits, including the reduction of skeletal mineralization that resulted in increased buoyancy. Results We compared craniofacial skeletal development in two pelagic notothenioids, Chaenocephalus aceratus and Pleuragramma antarcticum, to that in a benthic species, Notothenia coriiceps, and two outgroups, the threespine stickleback and the zebrafish. Relative to these other species, pelagic notothenioids exhibited a delay in pharyngeal bone development, which was associated with discrete heterochronic shifts in skeletal gene expression that were consistent with persistence of the chondrogenic program and a delay in the osteogenic program during larval development. Morphological analysis also revealed a bias toward the development of anterior and ventral elements of the notothenioid pharyngeal skeleton relative to dorsal and posterior elements. Conclusions Our data support the hypothesis that early shifts in the relative timing of craniofacial skeletal gene expression may have had a significant impact on the adaptive radiation of Antarctic notothenioids into pelagic habitats

    Kaposi's Sarcoma Associated Herpes Virus (KSHV) Induced COX-2: A Key Factor in Latency, Inflammation, Angiogenesis, Cell Survival and Invasion

    Get PDF
    Kaposi's sarcoma (KS), an enigmatic endothelial cell vascular neoplasm, is characterized by the proliferation of spindle shaped endothelial cells, inflammatory cytokines (ICs), growth factors (GFs) and angiogenic factors. KSHV is etiologically linked to KS and expresses its latent genes in KS lesion endothelial cells. Primary infection of human micro vascular endothelial cells (HMVEC-d) results in the establishment of latent infection and reprogramming of host genes, and cyclooxygenase-2 (COX-2) is one of the highly up-regulated genes. Our previous study suggested a role for COX-2 in the establishment and maintenance of KSHV latency. Here, we examined the role of COX-2 in the induction of ICs, GFs, angiogenesis and invasive events occurring during KSHV de novo infection of endothelial cells. A significant amount of COX-2 was detected in KS tissue sections. Telomerase-immortalized human umbilical vein endothelial cells supporting KSHV stable latency (TIVE-LTC) expressed elevated levels of functional COX-2 and microsomal PGE2 synthase (m-PGES), and secreted the predominant eicosanoid inflammatory metabolite PGE2. Infected HMVEC-d and TIVE-LTC cells secreted a variety of ICs, GFs, angiogenic factors and matrix metalloproteinases (MMPs), which were significantly abrogated by COX-2 inhibition either by chemical inhibitors or by siRNA. The ability of these factors to induce tube formation of uninfected endothelial cells was also inhibited. PGE2, secreted early during KSHV infection, profoundly increased the adhesion of uninfected endothelial cells to fibronectin by activating the small G protein Rac1. COX-2 inhibition considerably reduced KSHV latent ORF73 gene expression and survival of TIVE-LTC cells. Collectively, these studies underscore the pivotal role of KSHV induced COX-2/PGE2 in creating KS lesion like microenvironment during de novo infection. Since COX-2 plays multiple roles in KSHV latent gene expression, which themselves are powerful mediators of cytokine induction, anti-apoptosis, cell survival and viral genome maintainence, effective inhibition of COX-2 via well-characterized clinically approved COX-2 inhibitors could potentially be used in treatment to control latent KSHV infection and ameliorate KS

    Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation

    Get PDF
    Background: The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body: We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions: As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.Frances Corrigan, Kimberley A. Mander, Anna V. Leonard and Robert Vin

    The Advancement of Biomaterials in Regulating Stem Cell Fate.

    Get PDF
    Stem cells are well-known to have prominent roles in tissue engineering applications. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can differentiate into every cell type in the body while adult stem cells such as mesenchymal stem cells (MSCs) can be isolated from various sources. Nevertheless, an utmost limitation in harnessing stem cells for tissue engineering is the supply of cells. The advances in biomaterial technology allows the establishment of ex vivo expansion systems to overcome this bottleneck. The progress of various scaffold fabrication could direct stem cell fate decisions including cell proliferation and differentiation into specific lineages in vitro. Stem cell biology and biomaterial technology promote synergistic effect on stem cell-based regenerative therapies. Therefore, understanding the interaction of stem cell and biomaterials would allow the designation of new biomaterials for future clinical therapeutic applications for tissue regeneration. This review focuses mainly on the advances of natural and synthetic biomaterials in regulating stem cell fate decisions. We have also briefly discussed how biological and biophysical properties of biomaterials including wettability, chemical functionality, biodegradability and stiffness play their roles

    Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation

    Full text link

    The complete mitochondrial genome of Trematomus loennbergii

    No full text

    Larval growth in polyphenic salamanders: making the best of a bad lot

    Full text link
    Polyphenisms are excellent models for studying phenotypic variation, yet few studies have focused on natural populations. Facultative paedomorphosis is a polyphenism in which salamanders either metamorphose or retain their larval morphology and eventually become paedomorphic. Paedomorphosis can result from selection for capitalizing on favorable aquatic habitats (paedomorph advantage), but could also be a default strategy under poor aquatic conditions (best of a bad lot). We tested these alternatives by quantifying how the developmental environment influences the ontogeny of wild Arizona tiger salamanders (Ambystoma tigrinum nebulosum). Most paedomorphs in our study population arose from slow-growing larvae that developed under high density and size-structured conditions (best of a bad lot), although a few faster-growing larvae also became paedomorphic (paedomorph advantage). Males were more likely to become paedomorphs than females and did so under a greater range of body sizes than females, signifying a critical role for gender in this polyphenism. Our results emphasize that the same phenotype can be adaptive under different environmental and genetic contexts and that studies of phenotypic variation should consider multiple mechanisms of morph production
    corecore