883 research outputs found
Barriers encountered during enrollment in an internet-mediated randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Online technology is a promising resource for conducting clinical research. While the internet may improve a study's reach, as well as the efficiency of data collection, it may also introduce a number of challenges for participants and investigators. The objective of this research was to determine the challenges that potential participants faced during the enrollment phase of a randomized controlled intervention trial of Stepping Up to Health, an internet-mediated walking program that utilized a multi-step online enrollment process.</p> <p>Methods</p> <p>We conducted a quantitative content analysis of 623 help tickets logged in a participant management database during the enrollment phase of a clinical trial investigating the effect of an automated internet-mediated walking intervention. Qualitative coding was performed by two trained coders, and 10% of the sample was coded by both coders to determine inter-coder reliability. Quantitative analyses included standard descriptive statistics on ticket characteristics and theme frequency, and a Poisson regression analysis identified characteristics of potential participants who reported more frequent problems during enrollment.</p> <p>Results</p> <p>In total, 880 potential participants visited the study website and 80% completed the enrollment screening. Of the potential participants who visited the study website, 38% had help tickets logged in the participant management database. The total number of help tickets associated with individual potential participants ranged from 0 to 7 (M = .71). Overall, 46% of help tickets were initiated by email and 54% were initiated by phone. The most common help ticket theme was issues related to the study process (48%). The next most prominent theme was discussion related to obtaining medical clearance (34%), followed by issues related to pedometers and uploading (31%). Older individuals, women, and those with lower self-rated internet ability were more likely to report problems during the enrollment process.</p> <p>Conclusion</p> <p>Prospective participants in an online clinical trial encountered a number of barriers to enrollment that led them to request help from study staff. Questions about the complex enrollment process itself were common. In a complex multi-step enrollment process, providing personalized feedback to potential participants indicating their status within the enrollment process may be beneficial.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00729040</p
Epigenetics as a mechanism driving polygenic clinical drug resistance
Aberrant methylation of CpG islands located at or near gene promoters is associated with inactivation of gene expression during tumour development. It is increasingly recognised that such epimutations may occur at a much higher frequency than gene mutation and therefore have a greater impact on selection of subpopulations of cells during tumour progression or acquisition of resistance to anticancer drugs. Although laboratory-based models of acquired resistance to anticancer agents tend to focus on specific genes or biochemical pathways, such 'one gene : one outcome' models may be an oversimplification of acquired resistance to treatment of cancer patients. Instead, clinical drug resistance may be due to changes in expression of a large number of genes that have a cumulative impact on chemosensitivity. Aberrant CpG island methylation of multiple genes occurring in a nonrandom manner during tumour development and during the acquisition of drug resistance provides a mechanism whereby expression of multiple genes could be affected simultaneously resulting in polygenic clinical drug resistance. If simultaneous epigenetic regulation of multiple genes is indeed a major driving force behind acquired resistance of patients' tumour to anticancer agents, this has important implications for biomarker studies of clinical outcome following chemotherapy and for clinical approaches designed to circumvent or modulate drug resistance
Multi-Scale Sampling to Evaluate Assemblage Dynamics in an Oceanic Marine Reserve
To resolve the capacity of Marine Protected Areas (MPA) to enhance fish productivity it is first necessary to understand how environmental conditions affect the distribution and abundance of fishes independent of potential reserve effects. Baseline fish production was examined from 2002–2004 through ichthyoplankton sampling in a large (10,878 km2) Southern Californian oceanic marine reserve, the Cowcod Conservation Area (CCA) that was established in 2001, and the Southern California Bight as a whole (238,000 km2 CalCOFI sampling domain). The CCA assemblage changed through time as the importance of oceanic-pelagic species decreased between 2002 (La Niña) and 2003 (El Niño) and then increased in 2004 (El Niño), while oceanic species and rockfishes displayed the opposite pattern. By contrast, the CalCOFI assemblage was relatively stable through time. Depth, temperature, and zooplankton explained more of the variability in assemblage structure at the CalCOFI scale than they did at the CCA scale. CalCOFI sampling revealed that oceanic species impinged upon the CCA between 2002 and 2003 in association with warmer offshore waters, thus explaining the increased influence of these species in the CCA during the El Nino years. Multi-scale, spatially explicit sampling and analysis was necessary to interpret assemblage dynamics in the CCA and likely will be needed to evaluate other focal oceanic marine reserves throughout the world
Membranes by the Numbers
Many of the most important processes in cells take place on and across
membranes. With the rise of an impressive array of powerful quantitative
methods for characterizing these membranes, it is an opportune time to reflect
on the structure and function of membranes from the point of view of biological
numeracy. To that end, in this article, I review the quantitative parameters
that characterize the mechanical, electrical and transport properties of
membranes and carry out a number of corresponding order of magnitude estimates
that help us understand the values of those parameters.Comment: 27 pages, 12 figure
Cognitive engagement in the problem-based learning classroom
The objective of the present study was to examine to what extent autonomy in problem-based learning (PBL) results in cognitive engagement with the topic at hand. To that end, a short self-report instrument was devised and validated. Moreover, it was examined how cognitive engagement develops as a function of the learning process and the extent to which cognitive engagement determines subsequent levels of cognitive engagement during a one-day PBL event. Data were analyzed by means of confirmatory factor analysis, repeated measures ANOVA, and path analysis. The results showed that the new measure of situational cognitive engagement is valid and reliable. Furthermore, the results revealed that students’ cognitive engagement significantly increased as a function of the learning event. Implications of these findings for PBL are discussed
Are tutor behaviors in problem-based learning stable? A generalizability study of social congruence, expertise and cognitive congruence
The purpose of this study was to investigate the stability of three distinct tutor behaviors (1) use of subject-matter expertise, (2) social congruence and (3) cognitive congruence, in a problem-based learning (PBL) environment. The data comprised the input from 16,047 different students to a survey of 762 tutors administered in three consecutive semesters. Over the three semesters each tutor taught two of the same course and one different course. A generalizability study was conducted to determine whether the tutor behaviors were generalizable across the three measurement occasions. The results indicate that three semesters are sufficient to make generalizations about all three tutor behaviors. In addition the results show that individual differences between tutors account for the greatest differences in levels of expertise, social congruence and cognitive congruence. The study concludes that tutor behaviors are fairly consistent in PBL and somewhat impervious to change. Implications of these findings for tutor training are discussed
The Mechanism of Abrupt Transition between Theta and Hyper-Excitable Spiking Activity in Medial Entorhinal Cortex Layer II Stellate Cells
Recent studies have shown that stellate cells (SCs) of the medial entorhinal cortex become hyper-excitable in animal models of temporal lobe epilepsy. These studies have also demonstrated the existence of recurrent connections among SCs, reduced levels of recurrent inhibition in epileptic networks as compared to control ones, and comparable levels of recurrent excitation among SCs in both network types. In this work, we investigate the biophysical and dynamic mechanism of generation of the fast time scale corresponding to hyper-excitable firing and the transition between theta and fast firing frequency activity in SCs. We show that recurrently connected minimal networks of SCs exhibit abrupt, threshold-like transition between theta and hyper-excitable firing frequencies as the result of small changes in the maximal synaptic (AMPAergic) conductance. The threshold required for this transition is modulated by synaptic inhibition. Similar abrupt transition between firing frequency regimes can be observed in single, self-coupled SCs, which represent a network of recurrently coupled neurons synchronized in phase, but not in synaptically isolated SCs as the result of changes in the levels of the tonic drive. Using dynamical systems tools (phase-space analysis), we explain the dynamic mechanism underlying the genesis of the fast time scale and the abrupt transition between firing frequency regimes, their dependence on the intrinsic SC's currents and synaptic excitation. This abrupt transition is mechanistically different from others observed in similar networks with different cell types. Most notably, there is no bistability involved. ‘In vitro’ experiments using single SCs self-coupled with dynamic clamp show the abrupt transition between firing frequency regimes, and demonstrate that our theoretical predictions are not an artifact of the model. In addition, these experiments show that high-frequency firing is burst-like with a duration modulated by an M-current
Prognostic factors related to sequelae in childhood bacterial meningitis: Data from a Greek meningitis registry
<p>Abstract</p> <p>Background</p> <p>Bacterial meningitis (BM) is a life-threatening disease, often related with serious complications and sequelae. Infants and children who survive bacterial meningitis often suffer neurological and other sequelae.</p> <p>Methods</p> <p>A total of 2,477 patients aged 1 month to 14 years old hospitalized in a Children's Hospital in Greece diagnosed with acute bacterial meningitis were collected through a Meningitis Registry, from 1974 to 2005. Clinical, laboratory and other parameters (sex, age, pathogen, duration of symptoms before and after admission) were evaluated through univariate and multivariate analysis with regard to sequelae. Analysis of acute complications were also studied but not included in the final model.</p> <p>Results</p> <p>The rate of acute complications (arthritis and/or subdural effusion) was estimated at 6.8% (152 out of 2,251 patients, 95%CI 5.8-7.9) while the rate of sequelae (severe hearing loss, ventriculitis, hydrocephalus or seizure disorder) among survivors was estimated at 3.3% (73 out of 2,207 patients, 95%CI 2.6-4.2). Risk factors on admission associated with sequelae included seizures, absence of hemorrhagic rash, low CSF glucose, high CSF protein and the etiology of meningitis. A combination of significant prognostic factors including presence of seizures, low CSF glucose, high CSF protein, positive blood culture and absence of petechiae on admission presented an absolute risk of sequelae of 41.7% (95%CI 15.2-72.3).</p> <p>Conclusions</p> <p>A combination of prognostic factors of sequelae in childhood BM may be of value in selecting patients for more intensive therapy and in identifying possible candidates for new treatment strategies.</p
Effects of an attention demanding task on dynamic stability during treadmill walking
<p>Abstract</p> <p>Background</p> <p>People exhibit increased difficulty balancing when they perform secondary attention-distracting tasks while walking. However, a previous study by Grabiner and Troy (<it>J. Neuroengineering Rehabil</it>., 2005) found that young healthy subjects performing a concurrent Stroop task while walking on a motorized treadmill exhibited <it>decreased </it>step width variability. However, measures of variability do not directly quantify how a system responds to perturbations. This study re-analyzed data from Grabiner and Troy 2005 to determine if performing the concurrent Stroop task directly affected the dynamic stability of walking in these same subjects.</p> <p>Methods</p> <p>Thirteen healthy volunteers walked on a motorized treadmill at their self-selected constant speed for 10 minutes both while performing the Stroop test and during undisturbed walking. This Stroop test consisted of projecting images of the name of one color, printed in text of a different color, onto a wall and asking subjects to verbally identify the color of the text. Three-dimensional motions of a marker attached to the base of the neck (C5/T1) were recorded. Marker velocities were calculated over 3 equal intervals of 200 sec each in each direction. Mean variability was calculated for each time series as the average standard deviation across all strides. Both "local" and "orbital" dynamic stability were quantified for each time series using previously established methods. These measures directly quantify how quickly small perturbations grow or decay, either continuously in real time (local) or discretely from one cycle to the next (orbital). Differences between Stroop and Control trials were evaluated using a 2-factor repeated measures ANOVA.</p> <p>Results</p> <p>Mean variability of trunk movements was significantly reduced during the Stroop tests compared to normal walking. Conversely, local and orbital stability results were mixed: some measures showed slight increases, while others showed slight decreases. In many cases, different subjects responded differently to the Stroop test. While some of our comparisons reached statistical significance, many did not. In general, measures of variability and dynamic stability reflected different properties of walking dynamics, consistent with previous findings.</p> <p>Conclusion</p> <p>These findings demonstrate that the decreased movement variability associated with the Stroop task did <it>not </it>translate to greater dynamic stability.</p
- …