32 research outputs found
Interpretation of non-invasive breath tests using 13C-labeled substrates - a preliminary report with 13C-methacetin
Non-invasive breath tests can serve as valuable diagnostic tools in medicine as they can determine particular enzymatic and metabolic functions in vivo. However, methodological pitfalls have limited the actual clinical application of those tests till today. A major challenge of non-invasive breath tests has remained the provision of individually reliable test results. To overcome these limitations, a better understanding of breath kinetics during non-invasive breaths tests is essential. This analysis compares the breath recovery of a 13C-methacetin breath test with the actual serum kinetics of the substrate. It is shown, that breath and serum kinetics of the same test are significantly different over a period of 60 minutes. The recovery of the tracer 13CO2 in breath seems to be significantly delayed due to intermediate storage in the bicarbonate pool. This has to be taken into account for the application of non-invasive breath test protocols. Otherwise, breath tests might display bicarbonate kinetics despite the metabolic capacity of the particular target enzyme
FASIMU: flexible software for flux-balance computation series in large metabolic networks
<p>Abstract</p> <p>Background</p> <p>Flux-balance analysis based on linear optimization is widely used to compute metabolic fluxes in large metabolic networks and gains increasingly importance in network curation and structural analysis. Thus, a computational tool flexible enough to realize a wide variety of FBA algorithms and able to handle batch series of flux-balance optimizations is of great benefit.</p> <p>Results</p> <p>We present FASIMU, a command line oriented software for the computation of flux distributions using a variety of the most common FBA algorithms, including the first available implementation of (i) weighted flux minimization, (ii) fitness maximization for partially inhibited enzymes, and (iii) of the concentration-based thermodynamic feasibility constraint. It allows batch computation with varying objectives and constraints suited for network pruning, leak analysis, flux-variability analysis, and systematic probing of metabolic objectives for network curation. Input and output supports SBML. FASIMU can work with free (lp_solve and GLPK) or commercial solvers (CPLEX, LINDO). A new plugin (faBiNA) for BiNA allows to conveniently visualize calculated flux distributions. The platform-independent program is an open-source project, freely available under GNU public license at <url>http://www.bioinformatics.org/fasimu</url> including manual, tutorial, and plugins.</p> <p>Conclusions</p> <p>We present a flux-balance optimization program whose main merits are the implementation of thermodynamics as a constraint, batch series of computations, free availability of sources, choice on various external solvers, and the flexibility on metabolic objectives and constraints.</p
METANNOGEN: compiling features of biochemical reactions needed for the reconstruction of metabolic networks
BACKGROUND: One central goal of computational systems biology is the mathematical modelling of complex metabolic reaction networks. The first and most time-consuming step in the development of such models consists in the stoichiometric reconstruction of the network, i. e. compilation of all metabolites, reactions and transport processes relevant to the considered network and their assignment to the various cellular compartments. Therefore an information system is required to collect and manage data from different databases and scientific literature in order to generate a metabolic network of biochemical reactions that can be subjected to further computational analyses. RESULTS: The computer program METANNOGEN facilitates the reconstruction of metabolic networks. It uses the well-known database of biochemical reactions KEGG of biochemical reactions as primary information source from which biochemical reactions relevant to the considered network can be selected, edited and stored in a separate, user-defined database. Reactions not contained in KEGG can be entered manually into the system. To aid the decision whether or not a reaction selected from KEGG belongs to the considered network METANNOGEN contains information of SWISSPROT and ENSEMBL and provides Web links to a number of important information sources like METACYC, BRENDA, NIST, and REACTOME. If a reaction is reported to occur in more than one cellular compartment, a corresponding number of reactions is generated each referring to one specific compartment. Transport processes of metabolites are entered like chemical reactions where reactants and products have different compartment attributes. The list of compartmentalized biochemical reactions and membrane transport processes compiled by means of METANNOGEN can be exported as an SBML file for further computational analysis. METANNOGEN is highly customizable with respect to the content of the SBML output file, additional data-fields, the graphical input form, highlighting of project specific search terms and dynamically generated Web-links. CONCLUSION: METANNOGEN is a flexible tool to manage information for the design of metabolic networks. The program requires Java Runtime Environment 1.4 or higher and about 100 MB of free RAM and about 200 MB of free HD space. It does not require installation and can be directly Java-webstarted from
Integrating Flux Balance Analysis into Kinetic Models to Decipher the Dynamic Metabolism of Shewanella oneidensis MR-1
Shewanella oneidensis MR-1 sequentially utilizes lactate and its waste products (pyruvate and acetate) during batch culture. To decipher MR-1 metabolism, we integrated genome-scale flux balance analysis (FBA) into a multiple-substrate Monod model to perform the dynamic flux balance analysis (dFBA). The dFBA employed a static optimization approach (SOA) by dividing the batch time into small intervals (i.e., ∼400 mini-FBAs), then the Monod model provided time-dependent inflow/outflow fluxes to constrain the mini-FBAs to profile the pseudo-steady-state fluxes in each time interval. The mini-FBAs used a dual-objective function (a weighted combination of “maximizing growth rate” and “minimizing overall flux”) to capture trade-offs between optimal growth and minimal enzyme usage. By fitting the experimental data, a bi-level optimization of dFBA revealed that the optimal weight in the dual-objective function was time-dependent: the objective function was constant in the early growth stage, while the functional weight of minimal enzyme usage increased significantly when lactate became scarce. The dFBA profiled biologically meaningful dynamic MR-1 metabolisms: 1. the oxidative TCA cycle fluxes increased initially and then decreased in the late growth stage; 2. fluxes in the pentose phosphate pathway and gluconeogenesis were stable in the exponential growth period; and 3. the glyoxylate shunt was up-regulated when acetate became the main carbon source for MR-1 growth
Renal oncocytoma characterized by the defective complex I of the respiratory chain boosts the synthesis of the ROS scavenger glutathione.
Renal oncocytomas are rare benign tumors of the kidney and characterized by a deficient complex I (CI) enzyme activity of the oxidative phosphorylation (OXPHOS) system caused by mitochondrial DNA (mtDNA) mutations. Yet, little is known about the underlying molecular mechanisms and alterations of metabolic pathways in this tumor. We compared renal oncocytomas with adjacent matched normal kidney tissues on a global scale by multi-omics approaches, including whole exome sequencing (WES), proteomics, metabolomics, and metabolic pathway simulation. The abundance of proteins localized to mitochondria increased more than 2-fold, the only exception was a strong decrease in the abundance for CI subunits that revealed several pathogenic heteroplasmic mtDNA mutations by WES. We also observed renal oncocytomas to dysregulate main metabolic pathways, shunting away from gluconeogenesis and lipid metabolism. Nevertheless, the abundance of energy carrier molecules such as NAD+, NADH, NADP, ATP, and ADP were significantly higher in renal oncocytomas. Finally, a substantial 5000-fold increase of the reactive oxygen species scavenger glutathione can be regarded as a new hallmark of renal oncocytoma. Our findings demonstrate that renal oncocytomas undergo a metabolic switch to eliminate ATP consuming processes to ensure a sufficient energy supply for the tumor
Identification of HLA-B27-restricted peptides from the Chlamydia trachomatis proteome with possible relevance to HLA-B27-associated diseases.
The association of HLA-B27 with ankylosing spondylitis and reactive arthritis is the strongest one known between an MHC class I Ag and a disease. We have searched the proteome of the bacterium Chlamydia trachomatis for HLA-B27 binding peptides that are stimulatory for CD8(+) cells both in a model of HLA-B27 transgenic mice and in patients. This was done by combining two biomathematical computer programs, the first of which predicts HLA-B27 peptide binding epitopes, and the second the probability of HLA-B27 peptide generation by the proteasome system. After preselection, immunodominant peptides were identified by Ag-specific flow cytometry. Using this approach we have identified for the first time nine peptides derived from different C. trachomatis proteins that are stimulatory for CD8(+) T cells. Eight of these nine murine-derived peptides were recognized by cytotoxic T cells. The same strategy was used to identify B27-restricted chlamydial peptides in three patients with reactive arthritis. Eleven peptides were found to be stimulatory for patient-derived CD8(+) T cells, of which eight overlapped those found in mice. Additionally, we applied the tetramer technology, showing that a B27/chlamydial peptide containing one of the chlamydial peptides stained CD8(+) T cells in patients with Chlamydia-induced arthritis. This comprehensive approach offers the possibility of clarifying the pathogenesis of B27-associated diseases