19 research outputs found

    Rapid Etiological Classification of Meningitis by NMR Spectroscopy Based on Metabolite Profiles and Host Response

    Get PDF
    Bacterial meningitis is an acute disease with high mortality that is reduced by early treatment. Identification of the causative microorganism by culture is sensitive but slow. Large volumes of cerebrospinal fluid (CSF) are required to maximise sensitivity and establish a provisional diagnosis. We have utilised nuclear magnetic resonance (NMR) spectroscopy to rapidly characterise the biochemical profile of CSF from normal rats and animals with pneumococcal or cryptococcal meningitis. Use of a miniaturised capillary NMR system overcame limitations caused by small CSF volumes and low metabolite concentrations. The analysis of the complex NMR spectroscopic data by a supervised statistical classification strategy included major, minor and unidentified metabolites. Reproducible spectral profiles were generated within less than three minutes, and revealed differences in the relative amounts of glucose, lactate, citrate, amino acid residues, acetate and polyols in the three groups. Contributions from microbial metabolism and inflammatory cells were evident. The computerised statistical classification strategy is based on both major metabolites and minor, partially unidentified metabolites. This data analysis proved highly specific for diagnosis (100% specificity in the final validation set), provided those with visible blood contamination were excluded from analysis; 6-8% of samples were classified as indeterminate. This proof of principle study suggests that a rapid etiologic diagnosis of meningitis is possible without prior culture. The method can be fully automated and avoids delays due to processing and selective identification of specific pathogens that are inherent in DNA-based techniques

    Educational Attainment Influences Levels of Homozygosity through Migration and Assortative Mating

    Get PDF
    Individuals with a higher education are more likely to migrate, increasing the chance of meeting a spouse with a different ancestral background. In this context, the presence of strong educational assortment can result in greater ancestry differences within more educated spouse pairs, while less educated individuals are more likely to mate with someone with whom they share more ancestry. We examined the association between educational attainment and F roh (= the proportion of the genome consisting of runs of homozygosity [ROHs]) in ~2,000 subjects of Dutch ancestry. The subjects' own educational attainment showed a nominally significant negative association with F roh (p = .045), while the contribution of parental education to offspring F roh was highly significant (father: p < 10(-5); mother: p = 9 × 10(-5)), with more educated parents having offspring with fewer ROHs. This association was significantly and fully mediated by the physical distance between parental birthplaces (paternal education: pmediation = 2.4 × 10(-4); maternal education: pmediation = 2.3 × 10(-4)), which itself was also significantly associated with F roh (p = 9 × 10(-5)). Ancestry-informative principal components from the offspring showed a significantly decreasing association with geography as parental education increased, consistent with the significantly higher migration rates among more educated parents. Parental education also showed a high spouse correlation (Spearman's ρ = .66, p = 3 × 10(-262)). We show that less educated parents are less likely to mate with the more mobile parents with a higher education, creating systematic differences in homozygosity due to ancestry differences not directly captured by ancestry-informative principal components (PCs). Understanding how behaviors influence the genomic structure of a population is highly valuable for studies on the genetic etiology of behavioral, cognitive, and social traits

    Neonatal gonadotropin therapy in male congenital hypogonadotropic hypogonadism

    No full text
    corecore