24 research outputs found

    Potential effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis

    Get PDF
    Despite their importance as pollinators in crops and wild plants, solitary bees have not previously been included in non-target testing of insect-resistant transgenic crop plants. Larvae of many solitary bees feed almost exclusively on pollen and thus could be highly exposed to transgene products expressed in the pollen. The potential effects of pollen from oilseed rape expressing the cysteine protease inhibitor oryzacystatin-1 (OC-1) were investigated on larvae of the solitary bee Osmia bicornis (= O. rufa). Furthermore, recombinant OC-1 (rOC-1), the Bt toxin Cry1Ab and the snowdrop lectin Galanthus nivalis agglutinin (GNA) were evaluated for effects on the life history parameters of this important pollinator. Pollen provisions from transgenic OC-1 oilseed rape did not affect overall development. Similarly, high doses of rOC-1 and Cry1Ab as well as a low dose of GNA failed to cause any significant effects. However, a high dose of GNA (0.1%) in the larval diet resulted in significantly increased development time and reduced efficiency in conversion of pollen food into larval body weight. Our results suggest that OC-1 and Cry1Ab expressing transgenic crops would pose a negligible risk for O. bicornis larvae, whereas GNA expressing plants could cause detrimental effects, but only if bees were exposed to high levels of the protein. The described bioassay with bee brood is not only suitable for early tier non-target tests of transgenic plants, but also has broader applicability to other crop protection products

    “A good little tool to get to know yourself a bit better”: a qualitative study on users’ experiences of app-supported menstrual tracking in Europe

    Get PDF
    Background: Menstrual apps facilitate observation and analysis of menstrual cycles and associated factors through the collection and interpretation of data entered by users. As a subgroup of health-related apps, menstrual apps form part of one of the most dynamic and rapidly growing developments in biomedicine and health care. However, despite their popularity, qualitative research on how people engaging in period-tracking use and experience these apps remains scarce. Results: An inductive content analysis was performed and eight characteristics of app-supported menstrual tracking were identified: 1) tracking menstrual cycle dates and regularities, 2) preparing for upcoming periods, 3) getting to know menstrual cycles and bodies, 4) verifying menstrual experiences and sensations, 5) informing healthcare professionals, 6) tracking health, 7) contraception and seeking pregnancy, and 8) changes in tracking. Our study finds that period-tracking via apps has the potential to be an empowering practice as it helps users to be more aware of their menstrual cycles and health and to gain new knowledge. However, we also show that menstrual tracking can have negative consequences as it leads to distress in some cases, to privacy issues, and the work it requires can result in cessation. Finally, we present practical implications for healthcare providers and app developers. Conclusions: This qualitative study gives insight into users’ practices and experiences of app-supported menstrual tracking. The results provide information for researchers, health care providers and app designers about the implications of app-supported period-tracking and describe opportunities for patient-doctor interactions as well as for further development of menstrual apps.This research has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 675378

    Effects of Insemination Quantity on Honey Bee Queen Physiology

    Get PDF
    Mating has profound effects on the physiology and behavior of female insects, and in honey bee (Apis mellifera) queens, these changes are permanent. Queens mate with multiple males during a brief period in their early adult lives, and shortly thereafter they initiate egg-laying. Furthermore, the pheromone profiles of mated queens differ from those of virgins, and these pheromones regulate many different aspects of worker behavior and colony organization. While it is clear that mating causes dramatic changes in queens, it is unclear if mating number has more subtle effects on queen physiology or queen-worker interactions; indeed, the effect of multiple matings on female insect physiology has not been broadly addressed. Because it is not possible to control the natural mating behavior of queens, we used instrumental insemination and compared queens inseminated with semen from either a single drone (single-drone inseminated, or SDI) or 10 drones (multi-drone inseminated, or MDI). We used observation hives to monitor attraction of workers to SDI or MDI queens in colonies, and cage studies to monitor the attraction of workers to virgin, SDI, and MDI queen mandibular gland extracts (the main source of queen pheromone). The chemical profiles of the mandibular glands of virgin, SDI, and MDI queens were characterized using GC-MS. Finally, we measured brain expression levels in SDI and MDI queens of a gene associated with phototaxis in worker honey bees (Amfor). Here, we demonstrate for the first time that insemination quantity significantly affects mandibular gland chemical profiles, queen-worker interactions, and brain gene expression. Further research will be necessary to elucidate the mechanistic bases for these effects: insemination volume, sperm and seminal protein quantity, and genetic diversity of the sperm may all be important factors contributing to this profound change in honey bee queen physiology, queen behavior, and social interactions in the colony

    Effective and safe proton pump inhibitor therapy in acid-related diseases – A position paper addressing benefits and potential harms of acid suppression

    Full text link
    corecore