356 research outputs found

    Large Extra Dimension effects through Light-by-Light Scattering at the CERN LHC

    Get PDF
    Observing light-by-light scattering at the Large Hadron Collider (LHC) has received quite some attention and it is believed to be a clean and sensitive channel to possible new physics. In this paper, we study the diphoton production at the LHC via the process pppγγppγγp\rm pp\rightarrow p\gamma\gamma p\rightarrow p\gamma\gamma p through graviton exchange in the Large Extra Dimension (LED) model. Typically, when we do the background analysis, we also study the Double Pomeron Exchange (DPE) of γγ\gamma\gamma production. We compare its production in the quark-quark collision mode to the gluon-gluon collision mode and find that contributions from the gluon-gluon collision mode are comparable to the quark-quark one. Our result shows, for extra dimension δ=4\delta=4, with an integrated luminosity L=200fb1\rm {\cal L} = 200 fb^{-1} at the 14 TeV LHC, that diphoton production through graviton exchange can probe the LED effects up to the scale MS=5.06(4.51,5.11)TeV\rm M_S=5.06 (4.51, 5.11) TeV for the forward detector acceptance ξ1(ξ2,ξ3)\xi_1 (\xi_2, \xi_3), respectively, where 0.0015<ξ1<0.50.0015<\xi_1<0.5, 0.1<ξ2<0.50.1<\xi_2<0.5 and 0.0015<ξ3<0.150.0015<\xi_3<0.15.Comment: 25 pages. 7 figs. Change some grammatical error

    Long-lived stops in MSSM scenarios with a neutralino LSP

    Full text link
    This work investigates the possibility of a long-lived stop squark in supersymmetric models with the neutralino as the lightest supersymmetric particle (LSP). We study the implications of meta-stable stops on the sparticle mass spectra and the dark matter density. We find that in order to obtain a sufficiently long stop lifetime so as to be observable as a stable R-hadron at an LHC experiment, we need to fine tune the mass degeneracy between the stop and the LSP considerably. This increases the stop-neutralino coanihilation cross section, leaving the neutralino relic density lower than what is expected from the WMAP results for stop masses ~1.5 TeV/c^2. However, if such scenarios are realised in nature we demonstrate that the long-lived stops will be produced at the LHC and that stop-based R-hadrons with masses up to 1 TeV/c^2 can be detected after one year of running at design luminosity

    Z' signals in polarised top-antitop final states

    Full text link
    We study the sensitivity of top-antitop samples produced at all energy stages of the Large Hadron Collider (LHC) to the nature of an underlying Z' boson, in presence of full tree level standard model (SM) background effects and relative interferences. We concentrate on differential mass spectra as well as both spatial and spin asymmetries thereby demonstrating that exploiting combinations of these observables will enable one to distinguish between sequential Z's and those pertaining to Left-Right symmetric models as well as E6 inspired ones, assuming realistic final state reconstruction efficiencies and error estimates.Comment: 21 pages, 6 colour figures, 10 table

    TeV Scale Implications of Non Commutative Space time in Laboratory Frame with Polarized Beams

    Full text link
    We analyze e+eγγe^{+}e^{-}\rightarrow \gamma\gamma, eγeγe^{-}\gamma \rightarrow e^{-}\gamma and γγe+e\gamma\gamma \rightarrow e^{+}e^{-} processes within the Seiberg-Witten expanded noncommutative scenario using polarized beams. With unpolarized beams the leading order effects of non commutativity starts from second order in non commutative(NC) parameter i.e. O(Θ2)O(\Theta^2), while with polarized beams these corrections appear at first order (O(Θ)O(\Theta)) in cross section. The corrections in Compton case can probe the magnetic component(ΘB\vec{\Theta}_B) while in Pair production and Pair annihilation probe the electric component(ΘE\vec{\Theta}_E) of NC parameter. We include the effects of earth rotation in our analysis. This study is done by investigating the effects of non commutativity on different time averaged cross section observables. The results which also depends on the position of the collider, can provide clear and distinct signatures of the model testable at the International Linear Collider(ILC).Comment: 22 pages, 19 figures, new comments and references added, few typos corrected, Published in JHE

    Dijet signals of the Little Higgs model with T-parity

    Full text link
    The Littest Higgs model with T-parity (LHT), apart from offering a viable solution to the naturalness problem of the Standard Model, also predicts a set of new fermions as well as a candidate for dark matter. We explore the possibility of discovering the heavy T-odd quark Q_H at the LHC in a final state comprising two hard jets with a large missing transverse momentum. Also discussed is the role of heavy flavor tagging.Comment: Changes in text. Some references adde

    One Loop Renormalization of the Littlest Higgs Model

    Get PDF
    In Little Higgs models a collective symmetry prevents the Higgs from acquiring a quadratically divergent mass at one loop. This collective symmetry is broken by weakly gauged interactions. Terms, like Yukawa couplings, that display collective symmetry in the bare Lagrangian are generically renormalized into a sum of terms that do not respect the collective symmetry except possibly at one renormalization point where the couplings are related so that the symmetry is restored. We study here the one loop renormalization of a prototypical example, the Littlest Higgs Model. Some features of the renormalization of this model are novel, unfamiliar form similar chiral Lagrangian studies.Comment: 23 pages, 17 eps figure

    LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry

    Get PDF
    We examine the implications of the recent CDF measurement of the top-quark forward-backward asymmetry, focusing on a scenario with a new color octet vector boson at 1-3 TeV. We study several models, as well as a general effective field theory, and determine the parameter space which provides the best simultaneous fit to the CDF asymmetry, the Tevatron top pair production cross section, and the exclusion regions from LHC dijet resonance and contact interaction searches. Flavor constraints on these models are more subtle and less severe than the literature indicates. We find a large region of allowed parameter space at high axigluon mass and a smaller region at low mass; we match the latter to an SU(3)xSU(3)/SU(3) coset model with a heavy vector-like fermion. Our scenario produces discoverable effects at the LHC with only 1-2 inverse femtobarns of luminosity at 7-8 TeV. Lastly, we point out that a Tevatron measurement of the b-quark forward-backward asymmetry would be very helpful in characterizing the physics underlying the top-quark asymmetry.Comment: 35 pages, 10 figures, 4 table

    Supersymmetric Decays of the Z' Boson

    Full text link
    The decay of the Z' boson into supersymmetric particles is studied. We investigate how these supersymmetric modes affect the current limits from the Tevatron and project the expected sensitivities at the LHC. Employing three representative supersymmetric Z' models, namely, E_6, U(1)_{B-L}, and the sequential model, we show that the current limits of the Z' mass from the Tevatron could be reduced substantially due to the weakening of the branching ratio into leptonic pairs. The mass reach for the E_6 Z' bosons is about 1.3-1.5 TeV at the LHC-7 (1 fb^{-1}), about 2.5 - 2.6 TeV at the LHC-10 (10 fb^{-1}), and about 4.2 - 4.3 TeV at the LHC-14 (100 fb^{-1}). A similar mass reach for the U(1)_{B-L} Z' is also obtained. We also examine the potential of identifying various supersymmetric decay modes of the Z' boson because it may play a crucial role in the detailed dynamics of supersymmetry breaking.Comment: 30 pages, including 13 figures. improvements to the presentation and references adde

    Spacetime Noncommutativity in Models with Warped Extradimensions

    Full text link
    We construct consistent noncommutative (NC) deformations of the Randall-Sundrum spacetime that solve the NC Einstein equations with a non-trivial Poisson tensor depending on the fifth coordinate. In a class of these deformations where the Poisson tensor is exponentially localized on one of the branes (the NC-brane), we study the effects on bulk particles in terms of Lorentz-violating operators induced by NC-brane interactions. We sketch two models in which massive bulk particles mediate NC effects to an almost-commutative SM-brane, such that observables at high energy colliders are enhanced with respect to low energy and astrophysical observables.Comment: 15 pages, LaTeX, pdf figures included, to appear in JHE
    corecore