134 research outputs found

    Equation of State in a Strongly Interacting Relativistic System

    Full text link
    We study the evolution of the equation of state of a strongly interacting quark system as a function of the diquark interaction strength. We show that for the system to avoid collapsing into a pressureless Boson gas at sufficiently strong diquark coupling strength, the diquark-diquark repulsion has to be self-consistently taken into account. In particular, we find that the tendency at zero temperature of the strongly interacting diquark gas to condense into the system ground state is compensated by the repulsion between diquarks if the diquark-diquark coupling constant is higher than a critical value λC=7.65\lambda_C=7.65. Considering such diquark-diquark repulsion, a positive pressure with no significant variation along the whole strongly interacting region is obtained. A consequence of the diquark-diquark repulsion is that the system maintains its BCS character in the whole strongly interacting region.Comment: 9 pages, 7 figs, To appear in Phys. Rev.

    Radio detection prospects for a bulge population of millisecond pulsars as suggested by Fermi LAT observations of the inner Galaxy

    Get PDF
    Analogously to globular clusters, the dense stellar environment of the Galactic center has been proposed to host a large population of as-yet undetected millisecond pulsars (MSPs). Recently, this hypothesis found support in the analysis of gamma rays from the inner Galaxy seen by the Large Area Telescope (LAT) aboard the Fermi satellite, which revealed a possible excess of diffuse GeV photons in the inner 15 deg about the Galactic center (Fermi GeV excess). The excess can be interpreted as the collective emission of thousands of MSPs in the Galactic bulge, with a spherical distribution that strongly peaks towards the Galactic center. In order to fully establish the MSP interpretation, it is essential to find corroborating evidence in multi-wavelength searches, most notably through the detection of radio pulsation from individual bulge MSPs. Based on globular cluster observations and the gamma-ray emission from the inner Galaxy, we investigate the prospects for detecting MSPs in the Galactic bulge. While previous pulsar surveys failed to identify this population, we demonstrate that, in the upcoming years, new large-area surveys with focus on regions a few degrees north or south of the Galactic center should lead to the detection of dozens of bulge MSPs. Additionally, we show that, in the near future, deep targeted searches of unassociated Fermi sources should be able to detect the first few MSPs in the bulge. The prospects for these deep searches are enhanced by a tentative gamma-ray/radio correlation that we infer from high-latitude gamma-ray MSPs. Such detections would constitute the first clear discoveries of field MSPs in the Galactic bulge, with far-reaching implications for gamma-ray observations, the formation history of the central Milky Way and strategy optimization for future radio observations.Comment: 24 pages, 17 figures, 5 tables. Minor clarifications. Matches version published in Ap

    Using long-term millisecond pulsar timing to obtain physical characteristics of the bulge globular cluster Terzan 5

    Full text link
    Over the past decade the discovery of three unique stellar populations and a large number of confirmed pulsars within the globular cluster Terzan 5 has raised questions over its classification. Using the long-term radio pulsar timing of 36 millisecond pulsars in the cluster core, we provide new measurements of key physical properties of the system. As Terzan 5 is located within the galactic bulge, stellar crowding and reddening make optical and near infrared observations difficult. Pulsar accelerations, however, allow us to study the intrinsic characteristics of the cluster independent of reddening and stellar crowding and probe the mass density profile without needing to quantify the mass to light ratio. Relating the spin and orbital periods of each pulsar to the acceleration predicted by a King model, we find a core density of 1.58×1.58\times106^6 M_\odot pc3^{-3}, a core radius of 0.16 pc, a pulsar density profile nr3.14n\propto r^{-3.14}, and a total mass of MT_{\rm T}(R<R_\perp<1.0 pc)3.0×\simeq3.0\times105^5 M_\odot assuming a cluster distance of 5.9 kpc. Using this information we argue against Terzan 5 being a disrupted dwarf galaxy and discuss the possibility of Terzan 5 being a fragment of the Milky Way's proto-bulge. We also discuss whether low-mass pulsars were formed via electron capture supernovae or exist in a core full of heavy white dwarfs and hard binaries. Finally we provide an upper limit for the mass of a possible black hole at the core of the cluster of 3.0×\times104^4 M_\odot.Comment: 27 pages, 20 figures, 5 tables, thesis research, accepte

    A Massive Neutron Star in the Globular Cluster M5

    Full text link
    We report the results of 19 years of Arecibo timing for two pulsars in the globular cluster NGC 5904 (M5), PSR B1516+02A (M5A) and PSR B1516+02B (M5B). This has resulted in the measurement of the proper motions of these pulsars and, by extension, that of the cluster itself. M5B is a 7.95-ms pulsar in a binary system with a > 0.13 solar mass companion and an orbital period of 6.86 days. In deep HST images, no optical counterpart is detected within ~2.5 sigma of the position of the pulsar, implying that the companion is either a white dwarf or a low-mass main-sequence star. The eccentricity of the orbit (e = 0.14) has allowed a measurement of the rate of advance of periastron: (0.0142 +/-0.0007) degrees per year. We argue that it is very likely that this periastron advance is due to the effects of general relativity, the total mass of the binary system then being 2.29 +/-0.17 solar masses. The small measured mass function implies, in a statistical sense, that a very large fraction of this total mass is contained in the pulsar: 2.08 +/- 0.19 solar masses (1 sigma); there is a 5% probability that the mass of this object is < 1.72 solar masses and a 0.77% probability that is is between 1.2 and 1.44 solar masses. Confirmation of the median mass for this neutron star would exclude most ``soft'' equations of state for dense neutron matter. Millisecond pulsars (MSPs) appear to have a much wider mass distribution than is found in double neutron star systems; about half of these objects are significantly more massive than 1.44 solar masses. A possible cause is the much longer episode of mass accretion necessary to recycle a MSP, which in some cases corresponds to a much larger mass transfer.Comment: 10 pages in ApJ emulate format, 2 tables, 6 figures. Added February 2008 data, slightly revised mass limits. Accepted for publication in Ap

    Investigating Galactic supernova remnant candidates with LOFAR

    Full text link
    We investigate six supernova remnant (SNR) candidates --- G51.21+0.11, G52.37-0.70, G53.07+0.49, G53.41+0.03, G53.84-0.75, and the possible shell around G54.1-0.3 --- in the Galactic Plane using newly acquired LOw-Frequency ARray (LOFAR) High-Band Antenna (HBA) observations, as well as archival Westerbork Synthesis Radio Telescope (WSRT) and Very Large Array Galactic Plane Survey (VGPS) mosaics. We find that G52.37-0.70, G53.84-0.75, and the possible shell around pulsar wind nebula G54.1+0.3 are unlikely to be SNRs, while G53.07+0.49 remains a candidate SNR. G51.21+0.11 has a spectral index of α=0.7±0.21\alpha=-0.7\pm0.21, but lacks X-ray observations and as such requires further investigation to confirm its nature. We confirm one candidate, G53.41+0.03, as a new SNR because it has a shell-like morphology, a radio spectral index of α=0.6±0.2\alpha=-0.6\pm0.2 and it has the X-ray spectral characteristics of a 1000-8000 year old SNR. The X-ray analysis was performed using archival XMM-Newton observations, which show that G53.41+0.03 has strong emission lines and is best characterized by a non-equilibrium ionization model, consistent with an SNR interpretation. Deep Arecibo radio telescope searches for a pulsar associated with G53.41+0.03 resulted in no detection, but place stringent upper limits on the flux density of such a source if it is beamed towards Earth.Comment: 9 pages, 4 figures, 1 tabl
    corecore