24,913 research outputs found

    Non-spherical sources of static gravitational fields: investigating the boundaries of the no-hair theorem

    Full text link
    A new, globally regular model describing a static, non spherical gravitating object in General Relativity is presented. The model is composed by a vacuum Weyl--Levi-Civita special field - the so called gamma metric - generated by a regular static distribution of mass-energy. Standard requirements of physical reasonableness such as, energy, matching and regularity conditions are satisfied. The model is used as a toy in investigating various issues related to the directional behavior of naked singularities in static spacetimes and the blackhole (Schwarschild) limit.Comment: 10 pages, 2 figure

    Charging Interacting Rotating Black Holes in Heterotic String Theory

    Full text link
    We present a formulation of the stationary bosonic string sector of the whole toroidally compactified effective field theory of the heterotic string as a double Ernst system which, in the framework of General Relativity describes, in particular, a pair of interacting spinning black holes; however, in the framework of low--energy string theory the double Ernst system can be particularly interpreted as the rotating field configuration of two interacting sources of black hole type coupled to dilaton and Kalb--Ramond fields. We clarify the rotating character of the BtϕB_{t\phi}--component of the antisymmetric tensor field of Kalb--Ramond and discuss on its possible torsion nature. We also recall the fact that the double Ernst system possesses a discrete symmetry which is used to relate physically different string vacua. Therefore we apply the normalized Harrison transformation (a charging symmetry which acts on the target space of the low--energy heterotic string theory preserving the asymptotics of the transformed fields and endowing them with multiple electromagnetic charges) on a generic solution of the double Ernst system and compute the generated field configurations for the 4D effective field theory of the heterotic string. This transformation generates the U(1)nU(1)^n vector field content of the whole low--energy heterotic string spectrum and gives rise to a pair of interacting rotating black holes endowed with dilaton, Kalb--Ramond and multiple electromagnetic fields where the charge vectors are orthogonal to each other.Comment: 15 pages in latex, revised versio

    Mixed potentials in radiative stellar collapse

    Full text link
    We study the behaviour of a radiating star when the interior expanding, shearing fluid particles are traveling in geodesic motion. We demonstrate that it is possible to obtain new classes of exact solutions in terms of elementary functions without assuming a separable form for the gravitational potentials or initially fixing the temporal evolution of the model unlike earlier treatments. A systematic approach enables us to write the junction condition as a Riccati equation which under particular conditions may be transformed into a separable equation. New classes of solutions are generated which allow for mixed spatial and temporal dependence in the metric functions. We regain particular models found previously from our general classes of solutions.Comment: 10 pages, To appear in J. Math. Phy

    Scalable Ellipsoidal Classification for Bipartite Quantum States

    Full text link
    The Separability Problem is approached from the perspective of Ellipsoidal Classification. A Density Operator of dimension N can be represented as a vector in a real vector space of dimension N2−1N^{2}- 1, whose components are the projections of the matrix onto some selected basis. We suggest a method to test separability, based on successive optimization programs. First, we find the Minimum Volume Covering Ellipsoid that encloses a particular set of properly vectorized bipartite separable states, and then we compute the Euclidean distance of an arbitrary vectorized bipartite Density Operator to this ellipsoid. If the vectorized Density Operator falls inside the ellipsoid, it is regarded as separable, otherwise it will be taken as entangled. Our method is scalable and can be implemented straightforwardly in any desired dimension. Moreover, we show that it allows for detection of Bound Entangled StatesComment: 8 pages, 5 figures, 3 tables. Revised version, to appear in Physical Review

    Dynamics of Viscous Dissipative Plane Symmetric Gravitational Collapse

    Full text link
    We present dynamical description of gravitational collapse in view of Misner and Sharp's formalism. Matter under consideration is a complicated fluid consistent with plane symmetry which we assume to undergo dissipation in the form of heat flow, radiation, shear and bulk viscosity. Junction conditions are studied for a general spacetime in the interior and Vaidya spacetime in the exterior regions. Dynamical equations are obtained and coupled with causal transport equations derived in context of Mu¨\ddot{u}ller Israel Stewart theory. The role of dissipative quantities over collapse is investigated.Comment: 17 pages, accepted for publication in Gen. Relativ. Gra
    • …
    corecore