5 research outputs found

    Left Atrial Function in Patients with Titin Cardiomyopathy

    No full text
    Background: Truncating variants in titin (TTNtv) are the most prevalent genetic etiology of dilated cardiomyopathy (DCM). Although TTNtv has been associated with atrial fibrillation, it remains unknown whether and how left atrial (LA) function differs between patients with DCM with and without TTNtv. We aimed to determine and compare LA function in patients with DCM with and without TTNtv and to evaluate whether and how left ventricular (LV) function affects the LA using computational modeling. Methods and Results: Patients with DCM from the Maastricht DCM registry that underwent genetic testing and cardiovascular magnetic resonance (CMR) were included in the current study. Subsequent computational modeling (CircAdapt model) was performed to identify potential LV and LA myocardial hemodynamic substrates. In total, 377 patients with DCM (n = 42 with TTNtv, n = 335 without a genetic variant) were included (median age 55 years, interquartile range [IQR] 46–62 years, 62% men). Patients with TTNtv had a larger LA volume and decreased LA strain compared with patients without a genetic variant (LA volume index 60 mLm-2 [IQR 49–83] vs 51 mLm-2 [IQR 42–64]; LA reservoir strain 24% [IQR 10–29] vs 28% [IQR 20–34]; LA booster strain 9% [IQR 4–14] vs 14% [IQR 10–17], respectively; all P < .01). Computational modeling suggests that while the observed LV dysfunction partially explains the observed LA dysfunction in the patients with TTNtv, both intrinsic LV and LA dysfunction are present in patients with and without a TTNtv. Conclusions: Patients with DCM with TTNtv have more severe LA dysfunction compared with patients without a genetic variant. Insights from computational modeling suggest that both intrinsic LV and LA dysfunction are present in patients with DCM with and without TTNtv

    Biomarkers of Collagen Metabolism Are Associated with Left Ventricular Function and Prognosis in Dilated Cardiomyopathy:A Multi-Modal Study

    No full text
    Background: Collagen cross-linking is a fundamental process in dilated cardiomyopathy (DCM) and occurs when collagen deposition exceeds degradation, leading to impaired prognosis. This study investigated the associations of collagen-metabolism biomarkers with left ventricular function and prognosis in DCM. Methods: DCM patients who underwent endomyocardial biopsy, blood sampling, and cardiac MRI were included. The primary endpoint included death, heart failure hospitalization, or life-threatening arrhythmias, with a follow-up of 6 years (5–8). Results: In total, 209 DCM patients were included (aged 54 ± 13 years, 65% male). No associations were observed between collagen volume fraction, circulating carboxy-terminal propeptide of procollagen type-I (PICP), or collagen type I carboxy-terminal telopeptide [CITP] and matrix metalloproteinase [MMP]-1 ratio and cardiac function parameters. However, CITP:MMP-1 was significantly correlated with global longitudinal strain (GLS) in the total study sample (R = -0.40, p < 0.0001; lower CITP:MMP-1 ratio was associated with impaired GLS), with even stronger correlations in patients with LVEF > 40% (R = -0.70, p < 0.0001). Forty-seven (22%) patients reached the primary endpoint. Higher MMP-1 levels were associated with a worse outcome, even after adjustment for clinical and imaging predictors (1.026, 95% CI 1.002–1.051, p = 0.037), but CITP and CITP:MMP-1 were not. Combining MMP-1 and PICP improved the goodness-of-fit (LHR36.67, p = 0.004). Conclusion: The degree of myocardial cross-linking (CITP:MMP-1) is associated with myocardial longitudinal contraction, and MMP-1 is an independent predictor of outcome in DCM patients

    Clinical Risk Score to Predict Pathogenic Genotypes in Patients With Dilated Cardiomyopathy

    Get PDF
    Although genotyping allows family screening and influences risk-stratification in patients with nonischemic dilated cardiomyopathy (DCM) or isolated left ventricular systolic dysfunction (LVSD), its result is negative in a significant number of patients, limiting its widespread adoption. This study sought to develop and externally validate a score that predicts the probability for a positive genetic test result (G+) in DCM/LVSD. Clinical, electrocardiogram, and echocardiographic variables were collected in 1,015 genotyped patients from Spain with DCM/LVSD. Multivariable logistic regression analysis was used to identify variables independently predicting G+, which were summed to create the Madrid Genotype Score. The external validation sample comprised 1,097 genotyped patients from the Maastricht and Trieste registries. A G+ result was found in 377 (37%) and 289 (26%) patients from the derivation and validation cohorts, respectively. Independent predictors of a G+ result in the derivation cohort were: family history of DCM (OR: 2.29; 95% CI: 1.73-3.04; P < 0.001), low electrocardiogram voltage in peripheral leads (OR: 3.61; 95% CI: 2.38-5.49; P < 0.001), skeletal myopathy (OR: 3.42; 95% CI: 1.60-7.31; P = 0.001), absence of hypertension (OR: 2.28; 95% CI: 1.67-3.13; P < 0.001), and absence of left bundle branch block (OR: 3.58; 95% CI: 2.57-5.01; P < 0.001). A score containing these factors predicted a G+ result, ranging from 3% when all predictors were absent to 79% when ≥4 predictors were present. Internal validation provided a C-statistic of 0.74 (95% CI: 0.71-0.77) and a calibration slope of 0.94 (95% CI: 0.80-1.10). The C-statistic in the external validation cohort was 0.74 (95% CI: 0.71-0.78). The Madrid Genotype Score is an accurate tool to predict a G+ result in DCM/LVSD. (J Am Coll Cardiol 2022;80:1115-1126) © 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation

    Clinical Risk Score to Predict Pathogenic Genotypes in Patients With Dilated Cardiomyopathy

    Get PDF
    BACKGROUND: Although genotyping allows family screening and influences risk-stratification in patients with nonischemic dilated cardiomyopathy (DCM) or isolated left ventricular systolic dysfunction (LVSD), its result is negative in a significant number of patients, limiting its widespread adoption. OBJECTIVES: This study sought to develop and externally validate a score that predicts the probability for a positive genetic test result (G+) in DCM/LVSD. METHODS: Clinical, electrocardiogram, and echocardiographic variables were collected in 1,015 genotyped patients from Spain with DCM/LVSD. Multivariable logistic regression analysis was used to identify variables independently predicting G+, which were summed to create the Madrid Genotype Score. The external validation sample comprised 1,097 genotyped patients from the Maastricht and Trieste registries. RESULTS: A G+ result was found in 377 (37%) and 289 (26%) patients from the derivation and validation cohorts, respectively. Independent predictors of a G+ result in the derivation cohort were: family history of DCM (OR: 2.29; 95% CI: 1.73-3.04; P < 0.001), low electrocardiogram voltage in peripheral leads (OR: 3.61; 95% CI: 2.38-5.49; P < 0.001), skeletal myopathy (OR: 3.42; 95% CI: 1.60-7.31; P = 0.001), absence of hypertension (OR: 2.28; 95% CI: 1.67-3.13; P < 0.001), and absence of left bundle branch block (OR: 3.58; 95% CI: 2.57-5.01; P < 0.001). A score containing these factors predicted a G+ result, ranging from 3% when all predictors were absent to 79% when ≥4 predictors were present. Internal validation provided a C-statistic of 0.74 (95% CI: 0.71-0.77) and a calibration slope of 0.94 (95% CI: 0.80-1.10). The C-statistic in the external validation cohort was 0.74 (95% CI: 0.71-0.78). CONCLUSIONS: The Madrid Genotype Score is an accurate tool to predict a G+ result in DCM/LVSD
    corecore