10 research outputs found

    Focus/detector system of an x-ray apparatus for generating phase contrast recordings

    No full text
    A focus/detector system of an X-ray apparatus and a method for generating projective or tomographic phase contrast recordings, are disclosed. In an embodiment of the system, the system includes a beam source equipped with a focus and a focus-side source grating, arranged in the beam path and generates a field of ray-wise coherent X-rays, a grating/detector arrangement having a phase grating and grating lines arranged parallel to the source grating for generating an interference pattern, and a detector having a multiplicity of detector elements arranged flat for measuring the position-dependent radiation intensity behind the phase grating. Finally, the detector elements are formed by a multiplicity of elongate scintillation strips, which are aligned parallel to the grating lines of the phase grating and have a small period, whose integer multiple corresponds to the average large period of the interference pattern which is formed by the phase grating

    Toward clinical X-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen

    No full text
    X-ray computed tomography (CT) using phase contrast can provide images with greatly enhanced soft-tissue contrast in comparison to conventional attenuation-based CT. We report on the first scan of a human specimen recorded with a phase-contrast CT system based on an x-ray grating interferometer and a conventional x-ray tube source. Feasibility and potential applications of preclinical and clinical phase-contrast CT are discussed

    Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source

    No full text
    Phase-contrast imaging at laboratory-based x-ray sources using grating interferometers has been developed over the last few years for x-ray energies of up to 28 keV. Here, we show first phase-contrast projection and tomographic images recorded at significantly higher x-ray energies, produced by an x-ray tube source operated at 100 kV acceleration voltage. We find our measured tomographic phase images in good agreement with tabulated data. The extension of phase-contrast imaging to this significantly higher x-ray energy opens up many applications of the technique in medicine and industrial nondestructive testing

    Focus Detector Arrangement For Generating Phase-Contrast X-Ray Images and Method for this

    No full text
    A bundled electron beam (BEB) (14) is controlled regarding its excursion in its direction by two pairs of plate electrodes (17.1,17.2;18.1,18.2) that operate vertically to each other. The BEB can use appropriate control of these plate electrodes to scan an anode (16) like scanning a TV picture line by line with a desirable gap and, as a result, can generate desired X-rays. Independent claims are also included for the following: (1) An X-ray system for generating projective phase-contrast exposures; (2) A method for generating projective or tomographic X-ray phase-contrast exposures of an object under examination with the help of a focus-detector system

    Focus-detector arrangement of an X-ray apparatus for generating projective or tomographic phase contrast recordings

    No full text
    A focus-detector arrangement of an X-ray apparatus is disclosed for generating projective or tomographic phase contrast recordings of an observed region of a subject. In at least one embodiment, the arrangement includes a radiation source which emits a coherent or quasi-coherent X-radiation and irradiates the subject, a phase grating which is arranged behind the subject in the beam path of the radiation source and generates an interference pattern of the X-radiation in a predetermined energy range, and an analysis-detector system which detects at least the interference pattern generated by the phase grating in respect of its phase shift with position resolution. Further, the beam path of the X-radiation used diverges in at least one plane between the focus and the detector

    X-ray optical transmission grating of a focus-detector arrangement of an X-ray apparatus for generating projective or tomographic phase contrast recordings of a subject

    No full text
    An X-ray optical transmission grating of a focus-detector arrangement of an X-ray apparatus is disclosed, for generating projective or tomographic phase contrast recordings of a subject. In at least one embodiment, the grating includes a multiplicity of grating bars and grating gaps arranged periodically on at least one surface of at least one wafer, wherein the X-ray optical transmission grating includes at least two sub-gratings arranged in direct succession in the beam direction

    Focus-detector arrangement for generating projective or tomographic phase contrast recordings with X-ray optical gratings

    No full text
    A focus-detector arrangement of an X-ray apparatus is disclosed for generating projective or tomographic phase contrast recordings with a phase grating. According to at least one embodiment of the invention, in the gaps between its bars, the phase grating includes a filler material whose linear attenuation coefficient in the relevant energy range is greater than that of the bars. The height of the filler material in the gaps is dimensioned on the one hand so that the X-radiation with the energy used for measuring the phase shift generates a phase shift in the X-radiation such that, after the phase grating, the rays which pass through the bars are phase shifted by one half wavelength relative to the rays which pass through the gaps with the filler material. Further, the height of the filler material in the gaps on the other hand is dimensioned so that the attenuation of the X-radiation, at least in relation to the energy used for measuring the phase shift, is the same when passing through the bars and when passing through the filler material
    corecore