7,915 research outputs found

    e-Government in Greece: opportunities for improving the efficiency and effectiveness of local government

    Get PDF
    Currently in Greece, the Operational Programme for the Information Society (OPIS) is promoting ICT in the public sector. However, a content study of Greek government websites reveals that at local level e-government has generally not progressed beyond the information presentation stage. The findings of an online survey of government employees and interviews with key government officials suggest reasons for this. Recommendations are made for facilitating the development and implementation of full interactive local e-government

    Safety net? Trust and e-government

    Get PDF
    Although the use of e-government by citizens is uneven, states are pressing ahead with e-government programmes despite the concerns of online users about areas such as privacy, the security of online transactions and fraud. Issues of trust and e-government are explored by looking at the Greek experience. Evidence is presented of a mismatch between the perceived importance of the trustworthiness of e-government websites and the actual priorities set by the authorities. Recommendations are made for the enhancement of public trust and confidence in government, and a model is proposed for determining the trustworthiness of e-government sites

    e-Government in Greece: bridging the gap between need and reality

    Get PDF
    Increased use of Information and Communication Technology (ICT) in all layers of society, and especially in the public sector, is being promoted by the EU through various programmes and frameworks. Although Greece is keen to promote the information society, e government appears shyly on the horizon, mainly with the establishment of citizen service centres’. The reasons why full interactive online presence is still in its infancy in Greece, at least at a local government level, are considered and recommendations made for further research

    On the interactions between molecules in an off-resonant laser beam:Evaluating the response to energy migration and optically induced pair forces

    Get PDF
    Electronically excited molecules interact with their neighbors differently from their ground-state counterparts. Any migration of the excitation between molecules can modify intermolecular forces, reflecting changes to a local potential energy landscape. It emerges that throughput off-resonant radiation can also produce significant additional effects. The context for the present analysis of the mechanisms is a range of chemical and physical processes that fundamentally depend on intermolecular interactions resulting from second and fourth-order electric-dipole couplings. The most familiar are static dipole-dipole interactions, resonance energy transfer (both second-order interactions), and dispersion forces (fourth order). For neighboring molecules subjected to off-resonant light, additional forms of intermolecular interaction arise in the fourth order, including radiation-induced energy transfer and optical binding. Here, in a quantum electrodynamical formulation, these phenomena are cast in a unified description that establishes their inter-relationship and connectivity at a fundamental level. Theory is then developed for systems in which the interplay of these forms of interaction can be readily identified and analyzed in terms of dynamical behavior. The results are potentially significant in Förster measurements of conformational change and in the operation of microelectromechanical and nanoelectromechanical devices. © 2009 American Institute of Physics

    Parliamentary web presence: a comparative review

    Get PDF
    Parliamentary web presence is seen as a tool designed to buttress a range of key parliamentary functions operating within an overarching democratic framework. Many governments have embarked upon ambitious e-government programmes in the hope of increasing participation. However, there is now a growing realisation that e-government strategies have not achieved the hoped-for success and there is an increasing body of research concerned with analysing these problems. This paper seeks to add to this body of research and draws upon insights provided by usability studies developed to provide an analysis of various parliament websites. It also compares how parliaments of several countries use ICT to increase transparency and to facilitate participation of citizens. As such it is the first of its kind to undertake work of this nature. The paper concludes by arguing for a usability framework for analysing the effectiveness of e-parliaments. This could be used by e-government web designers and architects alike to identify weaknesses, within a specific area, of both the form and content of their parliament and other e-government websites

    Quantum Monte Carlo calculations of H2_2 dissociation on Si(001)

    Get PDF
    We present quantum Monte Carlo calculations for various reaction pathways of H2_2 with Si(001), using large model clusters of the surface. We obtain reaction energies and energy barriers noticeably higher than those from approximate exchange-correlation functionals. In improvement over previous studies, our adsorption barriers closely agree with experimental data. For desorption, the calculations give barriers for conventional pathways in excess of the presently accepted experimental value, and pinpoint the role of coverage effects and desorption from steps.Comment: 4 pages, 1 figur

    Acoustic characterization of crack damage evolution in sandstone deformed under conventional and true triaxial loading

    Get PDF
    We thank the Associate Editor, Michelle Cooke, and the reviewers, Ze'ev Reches and Yves GuĂ©guen, for useful comments which helped to improve the manuscript. We thank J.G. Van Munster for providing access to the true triaxial apparatus at KSEPL and for technical support during the experimental program. We thank R. Pricci for assistance with technical drawings of the apparatus. This work was partly funded by NERC award NE/N002938/1 and by a NERC Doctoral Studentship, which we gratefully acknowledge. Supporting data are included in a supporting information file; any additional data may be obtained from J.B. (e-mail: [email protected]).Peer reviewedPublisher PD

    A molecular theory for two-photon and three-photon fluorescence polarization

    Get PDF
    In the analysis of molecular structure and local order in heterogeneous samples, multiphoton excitation of fluorescence affords chemically specific information and high-resolution imaging. This report presents the results of an investigation that secures a detailed theoretical representation of the fluorescence polarization produced by one-, two-, and three-photon excitations, with orientational averaging procedures being deployed to deliver the fully disordered limits. The equations determining multiphoton fluorescence response prove to be expressible in a relatively simple, generic form, and graphs exhibit the functional form of the multiphoton fluorescence polarization. Amongst other features, the results lead to the identification of a condition under which the fluorescence produced through the concerted absorption of any number of photons becomes completely unpolarized. It is also shown that the angular variation of fluorescence intensities is reliable indicator of orientational disorder

    Non-perturbative renormalization of the KPZ growth dynamics

    Full text link
    We introduce a non-perturbative renormalization approach which identifies stable fixed points in any dimension for the Kardar-Parisi-Zhang dynamics of rough surfaces. The usual limitations of real space methods to deal with anisotropic (self-affine) scaling are overcome with an indirect functional renormalization. The roughness exponent α\alpha is computed for dimensions d=1d=1 to 8 and it results to be in very good agreement with the available simulations. No evidence is found for an upper critical dimension. We discuss how the present approach can be extended to other self-affine problems.Comment: 4 pages, 2 figures. To appear in Phys. Rev. Let

    Optical characterisation of germanium optical fibres

    Full text link
    Semiconductor core optical fibres are currently generating great interest as they promise to be a platform for the seamless incorporation of optoelectronic functionality into a new generation of all-fibre networks [1,2]. Although recent attentions have primarily focused on silicon as the material of choice for semiconductor photonics applications, germanium has some advantages over its counterpart. For example, it has higher nonlinearity, extended infrared transparency and has recently been demonstrated as a direct band gap laser medium [3]. Here we present the first optical characterisation of a germanium core optical fibre. The fibre was fabricated using a chemical micro fluidic deposition process [1] that uses GeH4 (germane) as a precursor to deposit amorphous germanium into the hole of a silica capillary. Figure 1 (a) shows an optical microscope image of the polished end face of a germanium fibre, with a 5.6 ”m core diameter, which has been completely filled with the semiconductor material. Optical transmission measurements have been conducted over the wavelength range 2 ”m to 11 ”m, to confirm the broad mid-infrared operational window, and the guided output at 2.4 ”m, imaged using a Spiricon Pyrocam III pyroelectric array camera, is shown in Figure 1 (b). At this wavelength the optical loss has been measured to be 20 dB/cm, which is comparable to losses measured for amorphous silicon fibres in the infrared. The potential for these germanium optical fibres to be used as optical modulators and infrared detectors will be discussed
    • 

    corecore