5,693 research outputs found
Acoustic characterization of crack damage evolution in sandstone deformed under conventional and true triaxial loading
We thank the Associate Editor, Michelle Cooke, and the reviewers, Ze'ev Reches and Yves Guéguen, for useful comments which helped to improve the manuscript. We thank J.G. Van Munster for providing access to the true triaxial apparatus at KSEPL and for technical support during the experimental program. We thank R. Pricci for assistance with technical drawings of the apparatus. This work was partly funded by NERC award NE/N002938/1 and by a NERC Doctoral Studentship, which we gratefully acknowledge. Supporting data are included in a supporting information file; any additional data may be obtained from J.B. (e-mail: [email protected]).Peer reviewedPublisher PD
Pseudorandomness for Regular Branching Programs via Fourier Analysis
We present an explicit pseudorandom generator for oblivious, read-once,
permutation branching programs of constant width that can read their input bits
in any order. The seed length is , where is the length of the
branching program. The previous best seed length known for this model was
, which follows as a special case of a generator due to
Impagliazzo, Meka, and Zuckerman (FOCS 2012) (which gives a seed length of
for arbitrary branching programs of size ). Our techniques
also give seed length for general oblivious, read-once branching
programs of width , which is incomparable to the results of
Impagliazzo et al.Our pseudorandom generator is similar to the one used by
Gopalan et al. (FOCS 2012) for read-once CNFs, but the analysis is quite
different; ours is based on Fourier analysis of branching programs. In
particular, we show that an oblivious, read-once, regular branching program of
width has Fourier mass at most at level , independent of the
length of the program.Comment: RANDOM 201
Sedimentation in an artificial lake -Lake Matahina, Bay of Plenty
Lake Matahina, an 8 km long hydroelectric storage reservoir, is a small (2.5 km2), 50 m deep, warm monomictic, gorge-type lake whose internal circulation is controlled by the inflowing Rangitaiki River which drains a greywacke and acid volcanic catchment. Three major proximal to distal subenvironments are defined for the lake on the basis of surficial sediment character and dominant depositional process: (a) fluvial-glassy, quartzofeld-spathic, and lithic gravel-sand mixtures deposited from contact and saltation loads in less than 3 m depth; (b) (pro-)deltaic-quartzofeldspathic and glassy sand-silt mixtures deposited from graded and uniform suspension loads in 3-20 m depth; and (c) basinal-diatomaceous, argillaceous, and glassy silt-clay mixtures deposited from uniform and pelagic suspension loads in 20-50 m depth. The delta face has been prograding into the lake at a rate of 35-40 m/year and vertical accretion rates in pro-delta areas are 15-20 cm/year. Basinal deposits are fed mainly from river plume dispersion involving overflows, interflows, and underflows, and by pelagic settling, and sedimentation rates behind the dam have averaged about 2 cm/year. Occasional fine sand layers in muds of basinal cores attest to density currents or underflows generated during river flooding flowing the length of the lake along a sublacustrine channel marking the position of the now submerged channel of the Rangitaiki River
A Remember-Know Analysis of the Semantic Serial Position Function
Did the serial position functions observed in certain semantic memory tasks (e.g., remembering the order of books or films) arise because they really tapped episodic memory? To address this issue, participants were asked to make "remember-know" judgments as they reconstructed the release order of the 7 Harry Potter books and 2 sets of movies. For both classes of stimuli, the "remember" and "know" serial position functions were indistinguishable, and all showed the characteristic U-shape with marked primacy and recency effects. These results are inconsistent with a multiple memory systems view, which predicts recency effects only for "remember" responses and no recency effects for "know" responses. However, the data were consistent with a general memory principle account: the relative distinctiveness principle. According to this view, performance on both episodic and semantic memory tasks arises from the same type of processing: Items that are more separated from their close neighbors in psychological space at the time of recall will be better remembered
A methodological framework to determine optimum durations for the construction of soil water characteristic curves using centrifugation
peer-reviewedDuring laboratory assessment of the soil water characteristic curve (SWCC), determining equilibrium at various pressures is challenging. This study establishes a methodological framework to identify appropriate experimental duration at each pressure step for the construction of SWCCs via centrifugation. Three common temporal approaches to equilibrium – 24-, 48- and 72-h – are examined, for a grassland and arable soil. The framework highlights the differences in equilibrium duration between the two soils. For both soils, the 24-h treatment significantly overestimated saturation. For the arable site, no significant difference was observed between the 48- and 72-h treatments. Hence, a 48-h treatment was sufficient to determine ‘effective equilibrium’. For the grassland site, the 48- and 72-h treatments differed significantly. This highlights that a more prolonged duration is necessary for some soils to conclusively determine that effective equilibrium has been reached. This framework can be applied to other soils to determine the optimum centrifuge durations for SWCC construction.Teagasc Walsh Fellowship Programm
Exact free energy distribution function of a randomly forced directed polymer
We study the elastic (1+1)-dimensional string subject to a random gaussian
potential on scales smaller than the correlation radius of the disorder
potential (Larkin problem). We present an exact calculation of the probability
function for the free energy of a string starting at
and ending at . The function is strongly
asymmetric, with the left tail decaying exponentially () and the right tail vanishing as . Our analysis defines a strategy for future attacks on
this class of problems.Comment: RevTeX, 4 pages, 1 figure inserte
Force distribution in a scalar model for non-cohesive granular material
We study a scalar lattice model for inter-grain forces in static,
non-cohesive, granular materials, obtaining two primary results. (i) The
applied stress as a function of overall strain shows a power law dependence
with a nontrivial exponent, which moreover varies with system geometry. (ii)
Probability distributions for forces on individual grains appear Gaussian at
all stages of compression, showing no evidence of exponential tails. With
regard to both results, we identify correlations responsible for deviations
from previously suggested theories.Comment: 16 pages, 9 figures, Submitted to PR
Low frequency response of a collectively pinned vortex manifold
A low frequency dynamic response of a vortex manifold in type-II
superconductor can be associated with thermally activated tunneling of large
portions of the manifold between pairs of metastable states (two-level
systems). We suggest that statistical properties of these states can be
verified by using the same approach for the analysis of thermal fluctuations
the behaviour of which is well known. We find the form of the response for the
general case of vortex manifold with non-dispersive elastic moduli and for the
case of thin superconducting film for which the compressibility modulus is
always non-local.Comment: 8 pages, no figures, ReVTeX, the final version. Text strongly
modified, all the results unchange
Complete phenomenological gravitational waveforms from spinning coalescing binaries
The quest for gravitational waves from coalescing binaries is customarily
performed by the LIGO-Virgo collaboration via matched filtering, which requires
a detailed knowledge of the signal. Complete analytical coalescence waveforms
are currently available only for the non-precessing binary systems. In this
paper we introduce complete phenomenological waveforms for the dominant
quadrupolar mode of generically spinning systems. These waveforms are
constructed by bridging the gap between the analytically known inspiral phase,
described by spin Taylor (T4) approximants in the restricted waveform
approximation, and the ring-down phase through a phenomenological intermediate
phase, calibrated by comparison with specific, numerically generated waveforms,
describing equal mass systems with dimension-less spin magnitudes equal to 0.6.
The overlap integral between numerical and phenomenological waveforms ranges
between 0.95 and 0.99.Comment: Proceeding for the GWDAW-14 conference. Added reference in v
- …