1,395 research outputs found

    The validation of BMI as an obesity criterion in Chinese adults

    Get PDF
    published_or_final_versio

    Overexpression Of Chd1l Is Positively Associated With Metastasis Of Lung Adenocarcinoma And Predicts Patients Poor Survival

    Get PDF
    CHD1L (chromodomain helicase/ATPase DNA binding protein 1-like gene) has been demonstrated as an oncogene in hepatocellular carcinoma (HCC), however, the role of CHD1L in non-small-cell lung cancer (NSCLC) tumorigenesis hasn't been elucidated. In this study, the expression and amplification status of CHD1L were examined by immunohistochemistry and fluorescence in situ hybridization respectively in 248 surgically resected NSCLCs. The associations between CHD1L expression and clinicopathologic features and the prognostic value of CHD1L were analyzed. Overexpression and amplification of CHD1L was found in 42.1% and 17.7% of NSCLCs, respectively. The frequency of CHD1L overexpression (53.2% vs. 28.1%, P = 0.002) and amplification (25.2% vs. 8.2%, P = 0.020) in adenocarcinoma (ADC), was much higher than that in squamous cell carcinoma (SCC). CHD1L overexpression was associated closely with ascending pN status (P < 0.001), advanced clinical stage (P = 0.001) and tumor distant metastasis (P = 0.001) in ADCs, but not in SCCs. For the whole cohort and ADC patients, univariate survival analysis demonstrated a significant association of CHD1L overexpression with shortened survival; and in multivariate analysis, CHD1L overexpression was evaluated as a independent predictor for overall survival and distant metastasis free survival. These results suggested that overexpression of CHD1L is positively associated with tumor metastasis of lung ADC, and might serve as a novel prognostic biomarker and potential therapeutic target for lung ADC patients.published_or_final_versio

    Evidence That a Lipolytic Enzyme—Hematopoietic-Specific Phospholipase C-β2—Promotes Mobilization of Hematopoietic Stem Cells by Decreasing Their Lipid Raft-Mediated Bone Marrow Retention and Increasing the Promobilizing Effects of Granulocytes

    Get PDF
    Hematopoietic stem/progenitor cells (HSPCs) reside in the bone marrow (BM) microenvironment and are retained there by the interaction of membrane lipid raft-associated receptors, such as the α-chemokine receptor CXCR4 and the α4β1-integrin (VLA-4, very late antigen 4 receptor) receptor, with their respective specific ligands, stromal-derived factor 1 and vascular cell adhesion molecule 1, expressed in BM stem cell niches. The integrity of the lipid rafts containing these receptors is maintained by the glycolipid glycosylphosphatidylinositol anchor (GPI-A). It has been reported that a cleavage fragment of the fifth component of the activated complement cascade, C5a, has an important role in mobilizing HSPCs into the peripheral blood (PB) by (i) inducing degranulation of BM-residing granulocytes and (ii) promoting their egress from the BM into the PB so that they permeabilize the endothelial barrier for subsequent egress of HSPCs. We report here that hematopoietic cell-specific phospholipase C-β2 (PLC-β2) has a crucial role in pharmacological mobilization of HSPCs. On the one hand, when released during degranulation of granulocytes, it digests GPI-A, thereby disrupting membrane lipid rafts and impairing retention of HSPCs in BM niches. On the other hand, it is an intracellular enzyme required for degranulation of granulocytes and their egress from BM. In support of this dual role, we demonstrate that PLC-β2-knockout mice are poor mobilizers and provide, for the first time, evidence for the involvement of this lipolytic enzyme in the mobilization of HSPCs

    Two-dimensional universal conductance fluctuations and the electron-phonon interaction of topological surface states in Bi2Te2Se nanoribbons

    Full text link
    The universal conductance fluctuations (UCFs), one of the most important manifestations of mesoscopic electronic interference, have not yet been demonstrated for the two-dimensional surface state of topological insulators (TIs). Even if one delicately suppresses the bulk conductance by improving the quality of TI crystals, the fluctuation of the bulk conductance still keeps competitive and difficult to be separated from the desired UCFs of surface carriers. Here we report on the experimental evidence of the UCFs of the two-dimensional surface state in the bulk insulating Bi2Te2Se nanoribbons. The solely-B\perp-dependent UCF is achieved and its temperature dependence is investigated. The surface transport is further revealed by weak antilocalizations. Such survived UCFs of the topological surface states result from the limited dephasing length of the bulk carriers in ternary crystals. The electron-phonon interaction is addressed as a secondary source of the surface state dephasing based on the temperature-dependent scaling behavior

    Circular Polymerase Extension Cloning of Complex Gene Libraries and Pathways

    Get PDF
    High-throughput genomics and the emerging field of synthetic biology demand ever more convenient, economical, and efficient technologies to assemble and clone genes, gene libraries and synthetic pathways. Here, we describe the development of a novel and extremely simple cloning method, circular polymerase extension cloning (CPEC). This method uses a single polymerase to assemble and clone multiple inserts with any vector in a one-step reaction in vitro. No restriction digestion, ligation, or single-stranded homologous recombination is required. In this study, we elucidate the CPEC reaction mechanism and demonstrate its usage in demanding synthetic biology applications such as one-step assembly and cloning of complex combinatorial libraries and multi-component pathways

    The novel CXCR4 antagonist POL5551 mobilizes hematopoietic stem and progenitor cells with greater efficiency than Plerixafor

    Get PDF
    Mobilized blood has supplanted bone marrow (BM) as the primary source of hematopoietic stem cells for autologous and allogeneic stem cell transplantation. Pharmacologically enforced egress of hematopoietic stem cells from BM, or mobilization, has been achieved by directly or indirectly targeting the CXCL12/CXCR4 axis. Shortcomings of the standard mobilizing agent, granulocyte colony-stimulating factor (G-CSF), administered alone or in combination with the only approved CXCR4 antagonist, Plerixafor, continue to fuel the quest for new mobilizing agents. Using Protein Epitope Mimetics technology, a novel peptidic CXCR4 antagonist, POL5551, was developed. In vitro data presented herein indicate high affinity to and specificity for CXCR4. POL5551 exhibited rapid mobilization kinetics and unprecedented efficiency in C57BL/6 mice, exceeding that of Plerixafor and at higher doses also of G-CSF. POL5551-mobilized stem cells demonstrated adequate transplantation properties. In contrast to G-CSF, POL5551 did not induce major morphological changes in the BM of mice. Moreover, we provide evidence of direct POL5551 binding to hematopoietic stem and progenitor cells (HSPCs) in vivo, strengthening the hypothesis that CXCR4 antagonists mediate mobilization by direct targeting of HSPCs. In summary, POL5551 is a potent mobilizing agent for HSPCs in mice with promising therapeutic potential if these data can be orroborated in humans

    Fully gapped topological surface states in Bi2_2Se3_3 films induced by a d-wave high-temperature superconductor

    Full text link
    Topological insulators are a new class of materials, that exhibit robust gapless surface states protected by time-reversal symmetry. The interplay between such symmetry-protected topological surface states and symmetry-broken states (e.g. superconductivity) provides a platform for exploring novel quantum phenomena and new functionalities, such as 1D chiral or helical gapless Majorana fermions, and Majorana zero modes which may find application in fault-tolerant quantum computation. Inducing superconductivity on topological surface states is a prerequisite for their experimental realization. Here by growing high quality topological insulator Bi2_2Se3_3 films on a d-wave superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} using molecular beam epitaxy, we are able to induce high temperature superconductivity on the surface states of Bi2_2Se3_3 films with a large pairing gap up to 15 meV. Interestingly, distinct from the d-wave pairing of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, the proximity-induced gap on the surface states is nearly isotropic and consistent with predominant s-wave pairing as revealed by angle-resolved photoemission spectroscopy. Our work could provide a critical step toward the realization of the long sought-after Majorana zero modes.Comment: Nature Physics, DOI:10.1038/nphys274

    Bright excitons in monolayer transition metal dichalcogenides: from Dirac cones to Dirac saddle points

    Full text link
    In monolayer transition metal dichalcogenides, tightly bound excitons have been discovered with a valley pseudospin that can be optically addressed through polarization selection rules. Here, we show that this valley pseudospin is strongly coupled to the exciton center-of-mass motion through electron-hole exchange. This coupling realizes a massless Dirac cone with chirality index I=2 for excitons inside the light cone, i.e. bright excitons. Under moderate strain, the I=2 Dirac cone splits into two degenerate I=1 Dirac cones, and saddle points with a linear Dirac spectrum emerge in the bright exciton dispersion. Interestingly, after binding an extra electron, the charged exciton becomes a massive Dirac particle associated with a large valley Hall effect protected from intervalley scattering. Our results point to unique opportunities to study Dirac physics, with exciton's optical addressability at specifiable momentum, energy and pseudospin. The strain-tunable valley-orbit coupling also implies new structures of exciton condensates, new functionalities of excitonic circuits, and possibilities for mechanical control of valley pseudospin

    Light hadron, Charmonium(-like) and Bottomonium(-like) states

    Full text link
    Hadron physics represents the study of strongly interacting matter in all its manifestations and the understanding of its properties and interactions. The interest on this field has been revitalized by the discovery of new light hadrons, charmonium- and bottomonium-like states. I review the most recent experimental results from different experiments.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 21 pages, 18 figures; add more references; some correctio
    corecore