2,925 research outputs found
Fermion Masses and Mixings in a S4 Based Model
It has been recently claimed that the symmetry group S4 yields to the
Tri-bimaximal neutrino mixing in a "natural" way from the group theory point of
view. Approving of this feature as an indication, we build a supersymmetric
model of lepton and quark masses based on this family symmetry group. In the
lepton sector, a correct mass hierarchy among the charged leptons is achieved
together to a neutrino mass matrix which can be diagonalized by the
Tri-bimaximal pattern. Our model results to be phenomenologically unequivalent
with respect to other proposals based on different flavour groups but still
predicting the Tri-bimaximal mixing. In the quark sector a realistic pattern
for masses and mixing angles is obtained. The flavour structures of the mass
matrices in both the sectors come from the spontaneously symmetry breaking of
S4, due to several scalar fields, which get non-zero vacuum expectation values.
A specific vacuum alignment is required and it is shown to be a natural results
of the minimization of the scalar potential and, moreover, to be stable under
the corrections from the higher order terms.Comment: 25 pages, LaTeX; added references and minor correctio
E,Z-Stereodivergent synthesis of N-tosyl α,β-dehydroamino esters via a Mukaiyama-Michael addition
The stereodivergent synthesis of N-tosyl α,β-dehydroamino esters via a Mukaiyama-Michael addition is reported. The reaction of silylketene acetals with N-tosylimines derived from β,γ-unsaturated α-keto esters in dichloromethane provided the corresponding (Z)-α,β-dehydroamino esters while the (E)-isomers were obtained when the reaction was carried out in the presence of 10 mol% copper(II) triflate
Decoupling property of the supersymmetric Higgs sector with four doublets
In supersymmetric standard models with multi Higgs doublet fields,
selfcoupling constants in the Higgs potential come only from the D-terms at the
tree level. We investigate the decoupling property of additional two heavier
Higgs doublet fields in the supersymmetric standard model with four Higgs
doublets. In particular, we study how they can modify the predictions on the
quantities well predicted in the minimal supersymmetric standard model (MSSM),
when the extra doublet fields are rather heavy to be measured at collider
experiments. The B-term mixing between these extra heavy Higgs bosons and the
relatively light MSSM-like Higgs bosons can significantly change the
predictions in the MSSM such as on the masses of MSSM-like Higgs bosons as well
as the mixing angle for the two light CP-even scalar states. We first give
formulae for deviations in the observables of the MSSM in the decoupling region
for the extra two doublet fields. We then examine possible deviations in the
Higgs sector numerically, and discuss their phenomenological implications.Comment: 26 pages, 24 figures, text sligtly modified,version to appear in
Journal of High Energy Physic
Higgs Boson Theory and Phenomenology
Precision electroweak data presently favors a weakly-coupled Higgs sector as
the mechanism responsible for electroweak symmetry breaking. Low-energy
supersymmetry provides a natural framework for weakly-coupled elementary
scalars. In this review, we summarize the theoretical properties of the
Standard Model (SM) Higgs boson and the Higgs sector of the minimal
supersymmetric extension of the Standard Model (MSSM). We then survey the
phenomenology of the SM and MSSM Higgs bosons at the Tevatron, LHC and a future
e+e- linear collider. We focus on the Higgs discovery potential of present and
future colliders and stress the importance of precision measurements of Higgs
boson properties.Comment: 90 pages, 31 figures. Revised version. To be published in Progress in
Particle and Nuclear Physics. This paper with higher resolution figures can
be found at http://scipp.ucsc.edu/~haber/higgsreview/higgsrev.p
The Next-to-Minimal Supersymmetric Standard Model
We review the theoretical and phenomenological aspects of the Next-to-Minimal
Supersymmetric Standard Model: the Higgs sector including radiative corrections
and the 2-loop beta-functions for all parameters of the general NMSSM; the
tadpole and domain wall problems, baryogenesis; NMSSM phenomenology at
colliders, B physics and dark matter; specific scenarios as the constrained
NMSSM, Gauge Mediated Supersymmetry Breaking, U(1)'-extensions, CP and R-parity
violation.Comment: 144 pages, 11 figures, corrections in Eqs.(2.2), (2.21), (B.9
C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity
The p53 family is known as a family of transcription factors with functions in tumor suppression and development. Whereas the central DNA-binding domain is highly conserved among the three family members p53, p63 and p73, the C-terminal domains (CTDs) are diverse and subject to alternative splicing and post-translational modification. Here we demonstrate that the CTDs strongly influence DNA binding and transcriptional activity: while p53 and the p73 isoform p73γ have basic CTDs and form weak sequence-specific protein–DNA complexes, the major p73 isoforms have neutral CTDs and bind DNA strongly. A basic CTD has been previously shown to enable sliding along the DNA backbone and to facilitate the search for binding sites in the complex genome. Our experiments, however, reveal that a basic CTD also reduces protein–DNA complex stability, intranuclear mobility, promoter occupancy in vivo, target gene activation and induction of cell cycle arrest or apoptosis. A basic CTD therefore provides both positive and negative regulatory functions presumably to enable rapid switching of protein activity in response to stress. The different DNA-binding characteristics of the p53 family members could therefore reflect their predominant role in the cellular stress response (p53) or developmental processes (p73)
Single-Scale Natural SUSY
We consider the prospects for natural SUSY models consistent with current
data. Recent constraints make the standard paradigm unnatural so we consider
what could be a minimal extension consistent with what we now know. The most
promising such scenarios extend the MSSM with new tree-level Higgs interactions
that can lift its mass to at least 125 GeV and also allow for flavor-dependent
soft terms so that the third generation squarks are lighter than current bounds
on the first and second generation squarks. We argue that a common feature of
almost all such models is the need for a new scale near 10 TeV, such as a scale
of Higgsing or confinement of a new gauge group. We consider the question
whether such a model can naturally derive from a single mass scale associated
with supersymmetry breaking. Most such models simply postulate new scales,
leaving their proximity to the scale of MSSM soft terms a mystery. This
coincidence problem may be thought of as a mild tuning, analogous to the usual
mu problem. We find that a single mass scale origin is challenging, but suggest
that a more natural origin for such a new dynamical scale is the gravitino
mass, m_{3/2}, in theories where the MSSM soft terms are a loop factor below
m_{3/2}. As an example, we build a variant of the NMSSM where the singlet S is
composite, and the strong dynamics leading to compositeness is triggered by
masses of order m_{3/2} for some fields. Our focus is the Higgs sector, but our
model is compatible with a light stop (with the other generation squarks heavy,
or with R-parity violation or another mechanism to hide them from current
searches). All the interesting low-energy mass scales, including linear terms
for S playing a key role in EWSB, arise dynamically from the single scale
m_{3/2}. However, numerical coefficients from RG effects and wavefunction
factors in an extra dimension complicate the otherwise simple story.Comment: 32 pages, 3 figures; version accepted by JHE
Theory and phenomenology of two-Higgs-doublet models
We discuss theoretical and phenomenological aspects of two-Higgs-doublet
extensions of the Standard Model. In general, these extensions have scalar
mediated flavour changing neutral currents which are strongly constrained by
experiment. Various strategies are discussed to control these flavour changing
scalar currents and their phenomenological consequences are analysed. In
particular, scenarios with natural flavour conservation are investigated,
including the so-called type I and type II models as well as lepton-specific
and inert models. Type III models are then discussed, where scalar flavour
changing neutral currents are present at tree level, but are suppressed by
either specific ansatze for the Yukawa couplings or by the introduction of
family symmetries. We also consider the phenomenology of charged scalars in
these models. Next we turn to the role of symmetries in the scalar sector. We
discuss the six symmetry-constrained scalar potentials and their extension into
the fermion sector. The vacuum structure of the scalar potential is analysed,
including a study of the vacuum stability conditions on the potential and its
renormalization-group improvement. The stability of the tree level minimum of
the scalar potential in connection with electric charge conservation and its
behaviour under CP is analysed. The question of CP violation is addressed in
detail, including the cases of explicit CP violation and spontaneous CP
violation. We present a detailed study of weak basis invariants which are odd
under CP. A careful study of spontaneous CP violation is presented, including
an analysis of the conditions which have to be satisfied in order for a vacuum
to violate CP. We present minimal models of CP violation where the vacuum phase
is sufficient to generate a complex CKM matrix, which is at present a
requirement for any realistic model of spontaneous CP violation.Comment: v3: 180 pages, 506 references, new chapter 7 with recent LHC results;
referee comments taken into account; submitted to Physics Report
NSUSY fits
We perform a global fit to Higgs signal-strength data in the context of light
stops in Natural SUSY. In this case, the Wilson coefficients of the higher
dimensional operators mediating g g -> h and h -> \gamma \gamma, given by c_g,
c_\gamma, are related by c_g = 3 (1 + 3 \alpha_s/(2 \pi)) c_\gamma/8. We
examine this predictive scenario in detail, combining Higgs signal-strength
constraints with recent precision measurements of m_W, b-> s \gamma constraints
and direct collider bounds on weak scale SUSY, finding regions of parameter
space that are consistent with all of these constraints. However it is
challenging for the allowed parameter space to reproduce the observed Higgs
mass value with sub-TeV stops. We discuss some of the direct stop discovery
prospects and show how global Higgs fits can be used to exclude light stop
parameter space difficult to probe by direct collider searches. We determine
the current status of such indirect exclusions and estimate their reach by the
end of the 8 TeV LHC run.Comment: 41 pages, 13 figures. v3: final JHEP version, b to s gamma updated to
latest data and typos correcte
Excluding Electroweak Baryogenesis in the MSSM
In the context of the MSSM the Light Stop Scenario (LSS) is the only region
of parameter space that allows for successful Electroweak Baryogenesis (EWBG).
This possibility is very phenomenologically attractive, since it allows for the
direct production of light stops and could be tested at the LHC. The ATLAS and
CMS experiments have recently supplied tantalizing hints for a Higgs boson with
a mass of ~ 125 GeV. This Higgs mass severely restricts the parameter space of
the LSS, and we discuss the specific predictions made for EWBG in the MSSM.
Combining data from all the available ATLAS and CMS Higgs searches reveals a
tension with the predictions of EWBG even at this early stage. This allows us
to exclude EWBG in the MSSM at greater than (90) 95% confidence level in the
(non-)decoupling limit, by examining correlations between different Higgs decay
channels. We also examine the exclusion without the assumption of a ~ 125 GeV
Higgs. The Higgs searches are still highly constraining, excluding the entire
EWBG parameter space at greater than 90% CL except for a small window of m_h ~
117 - 119 GeV.Comment: 24 Pages, 4 Figures (v3: fixed typos, minor corrections, added
references
- …