56 research outputs found

    Oriented Three-Dimensional Magnetic Biskyrmion in MnNiGa Bulk Crystals

    Full text link
    A biskyrmion consists of two bound, topologically stable skyrmion spin textures. These coffee-bean-shaped objects have been observed in real-space in thin plates using Lorentz transmission electron microscopy (LTEM). From LTEM imaging alone, it is not clear whether biskyrmions are surface-confined objects, or, analogously to skyrmions in non-centrosymmetric helimagnets, three-dimensional tube-like structures in bulk sample. Here, we investigate the biskyrmion form factor in single- and polycrystalline MnNiGa samples using small angle neutron scattering (SANS). We find that biskyrmions are not long-range ordered, not even in single-crystals. Surprisingly all of the disordered biskyrmions have their in-plane symmetry axis aligned along certain directions, governed by the magnetocrystalline anisotropy. This anisotropic nature of biskyrmions may be further exploited to encode information

    Visualization of C. elegans transgenic arrays by GFP

    Get PDF
    BACKGROUND: Targeting the green fluorescent protein (GFP) via the E. coli lac repressor (LacI) to a specific DNA sequence, the lac operator (lacO), allows visualization of chromosomes in yeast and mammalian cells. In principle this method of visualization could be used for genetic mosaic analysis, which requires cell-autonomous markers that can be scored easily and at single cell resolution. The C. elegans lin-3 gene encodes an epidermal growth factor family (EGF) growth factor. lin-3 is expressed in the gonadal anchor cell and acts through LET-23 (transmembrane protein tyrosine kinase and ortholog of EGF receptor) to signal the vulval precursor cells to generate vulval tissue. lin-3 is expressed in the vulval cells later, and recent evidence raises the possibility that lin-3 acts in the vulval cells as a relay signal during vulval induction. It is thus of interest to test the site of action of lin-3 by mosaic analysis. RESULTS: We visualized transgenes in living C. elegans by targeting the green fluorescent protein (GFP) via the E. coli lac repressor (LacI) to a specific 256 sequence repeat of the lac operator (lacO) incorporated into transgenes. We engineered animals to express a nuclear-localized GFP-LacI fusion protein. C. elegans cells having a lacO transgene result in nuclear-localized bright spots (i.e., GFP-LacI bound to lacO). Cells with diffuse nuclear fluorescence correspond to unbound nuclear localized GFP-LacI. We detected chromosomes in living animals by chromosomally integrating the array of the lacO repeat sequence and visualizing the integrated transgene with GFP-LacI. This detection system can be applied to determine polyploidy as well as investigating chromosome segregation. To assess the GFP-LacI•lacO system as a marker for mosaic analysis, we conducted genetic mosaic analysis of the epidermal growth factor lin-3, expressed in the anchor cell. We establish that lin-3 acts in the anchor cell to induce vulva development, demonstrating this method's utility in detecting the presence of a transgene. CONCLUSION: The GFP-LacI•lacO transgene detection system works in C. elegans for visualization of chromosomes and extrachromosomal transgenes. It can be used as a marker for genetic mosaic analysis. The lacO repeat sequence as an extrachromosomal array becomes a valuable technique allowing rapid, accurate determination of spontaneous loss of the array, thereby allowing high-resolution mosaic analysis. The lin-3 gene is required in the anchor cell to induce the epidermal vulval precursors cells to undergo vulval development

    A practical solution for preserving single cells for RNA sequencing.

    No full text
    The design and implementation of single-cell experiments is often limited by their requirement for fresh starting material. We have adapted a method for histological tissue fixation using dithio-bis(succinimidyl propionate) (DSP), or Lomant's Reagent, to stabilise cell samples for single-cell transcriptomic applications. DSP is a reversible cross-linker of free amine groups that has previously been shown to preserve tissue integrity for histology while maintaining RNA integrity and yield in bulk RNA extractions. Although RNA-seq data from DSP-fixed single cells appears to be prone to characteristic artefacts, such as slightly reduced yield of cDNA and a detectable 3' bias in comparison with fresh cells, cell preservation using DSP does not appear to substantially reduce RNA complexity at the gene level. In addition, there is evidence that instantaneous fixation of cells can reduce inter-cell technical variability. The ability of DSP-fixed cells to retain commonly used dyes, such as propidium iodide, enables the tracking of experimental sub-populations and the recording of cell viability at the point of fixation. Preserving cells using DSP will remove several barriers in the staging of single-cell experiments, including the transport of samples and the scheduling of shared equipment for downstream single-cell isolation and processing
    • …
    corecore