35 research outputs found

    Understanding acute ankle ligamentous sprain injury in sports

    Get PDF
    This paper summarizes the current understanding on acute ankle sprain injury, which is the most common acute sport trauma, accounting for about 14% of all sport-related injuries. Among, 80% are ligamentous sprains caused by explosive inversion or supination. The injury motion often happens at the subtalar joint and tears the anterior talofibular ligament (ATFL) which possesses the lowest ultimate load among the lateral ligaments at the ankle. For extrinsic risk factors to ankle sprain injury, prescribing orthosis decreases the risk while increased exercise intensity in soccer raises the risk. For intrinsic factors, a foot size with increased width, an increased ankle eversion to inversion strength, plantarflexion strength and ratio between dorsiflexion and plantarflexion strength, and limb dominance could increase the ankle sprain injury risk. Players with a previous sprain history, players wearing shoes with air cells, players who do not stretch before exercising, players with inferior single leg balance, and overweight players are 4.9, 4.3, 2.6, 2.4 and 3.9 times more likely to sustain an ankle sprain injury. The aetiology of most ankle sprain injuries is incorrect foot positioning at landing – a medially-deviated vertical ground reaction force causes an explosive supination or inversion moment at the subtalar joint in a short time (about 50 ms). Another aetiology is the delayed reaction time of the peroneal muscles at the lateral aspect of the ankle (60–90 ms). The failure supination or inversion torque is about 41–45 Nm to cause ligamentous rupture in simulated spraining tests on cadaver. A previous case report revealed that the ankle joint reached 48 degrees inversion and 10 degrees internal rotation during an accidental grade I ankle ligamentous sprain injury during a dynamic cutting trial in laboratory. Diagnosis techniques and grading systems vary, but the management of ankle ligamentous sprain injury is mainly conservative. Immobilization should not be used as it results in joint stiffness, muscle atrophy and loss of proprioception. Traditional Chinese medicine such as herbs, massage and acupuncture were well applied in China in managing sports injuries, and was reported to be effective in relieving pain, reducing swelling and edema, and restoring normal ankle function. Finally, the best practice of sports medicine would be to prevent the injury. Different previous approaches, including designing prophylactice devices, introducing functional interventions, as well as change of games rules were highlighted. This paper allows the readers to catch up with the previous researches on ankle sprain injury, and facilitate the future research idea on sport-related ankle sprain injury

    A comprehensive assessment of urinary iodine concentration and thyroid hormones in New Zealand schoolchildren: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insufficient iodine in children’s diets is of concern because thyroid hormones are needed for normal growth and development, particularly of the brain. This study aimed to carry out a comprehensive assessment of the iodine status of New Zealand schoolchildren using a range of biochemical indices suitable for populations (i.e. urinary iodine concentration) and individuals (i.e. thyroid hormones).</p> <p>Methods</p> <p>The New Zealand National Children’s Nutrition Survey was a cross­‒sectional survey of a representative sample of schoolchildren aged 5­‒14 years. Children were asked to provide a casual urine sample for the determination of urinary iodine concentration (UIC) and a blood sample for the determination of thyroglobulin (Tg), Thyroid Stimulating Hormone (TSH), free thyroxine (fT4) and free triiodothyronine (fT3).</p> <p>Results</p> <p>The median UIC was 68 μg/L (n = 1153), which falls between 50­‒99 μg/L indicative of mild iodine deficiency. Furthermore, 29% of children had an UIC <50 μg/L and 82% had an UIC <100 μg/L. The median Tg concentration was 12.9 μg/L, which also falls between 10.0­‒19.9 μg/L indicative of mild iodine deficiency. The Tg concentration of children with an UIC <100 μg/L was 13.9 μg/L, higher than the 10.3 μg/L in children with an UIC >100 μg/L (<it>P</it> = 0.001). The mean TSH (1.7 mU/L), fT4 (14.9 pmol/L), and fT3 (6.0 pmol/L) concentrations for these mildly iodine deficient New Zealand children fell within normal reference ranges.</p> <p>Conclusions</p> <p>The UIC and Tg concentration indicate that New Zealand schoolchildren were mildly iodine deficient according to WHO/UNICEF/ICCIDD, and both are suitable indices to assess iodine status in populations or groups. The normal concentrations of TSH, fT4 and fT3 of these children suggest that these thyroid hormones are not useful indices of mild iodine deficiency.</p

    Antiandrogene

    No full text
    corecore