13 research outputs found

    3D-conformal-intensity modulated radiotherapy with compensators for head and neck cancer: clinical results of normal tissue sparing

    Get PDF
    BACKGROUND: To investigate the potential of parotic gland sparing of intensity modulated radiotherapy (3D-c-IMRT) performed with metallic compensators for head and neck cancer in a clinical series by analysis of dose distributions and clinical measures. MATERIALS AND METHODS: 39 patients with squamous cell cancer of the head and neck irradiated using 3D-c-IMRT were evaluable for dose distribution within PTVs and at one parotid gland and 38 patients for toxicity analysis. 10 patients were treated primarily, 29 postoperatively, 19 received concomittant cis-platin based chemotherapy, 20 3D-c-IMRT alone. Initially the dose distribution was calculated with Helax (® )and photon fluence was modulated using metallic compensators made of tin-granulate (n = 22). Later the dose distribution was calculated with KonRad (® )and fluence was modified by MCP 96 alloy compensators (n = 17). Gross tumor/tumor bed (PTV 1) was irradiated up to 60–70 Gy, [5 fractions/week, single fraction dose: 2.0–2.2 (simultaneously integrated boost)], adjuvantly irradiated bilateral cervical lymph nodes (PTV 2) with 48–54 Gy [single dose: 1.5–1.8]). Toxicity was scored according the RTOG scale and patient-reported xerostomia questionnaire (XQ). RESULTS: Mean of the median doses at the parotid glands to be spared was 25.9 (16.3–46.8) Gy, for tin graulate 26 Gy, for MCP alloy 24.2 Gy. Tin-granulate compensators resulted in a median parotid dose above 26 Gy in 10/22, MCP 96 alloy in 0/17 patients. Following acute toxicities were seen (°0–2/3): xerostomia: 87%/13%, dysphagia: 84%/16%, mucositis: 89%/11%, dermatitis: 100%/0%. No grade 4 reaction was encountered. During therapy the XQ forms showed °0–2/3): 88%/12%. 6 months postRT chronic xerostomia °0–2/3 was observed in 85%/15% of patients, none with °4 xerostomia. CONCLUSION: 3D-c-IMRT using metallic compensators along with inverse calculation algorithm achieves sufficient parotid gland sparing in virtually all advanced head and neck cancers. Since the concept of lower single (and total) doses in the adjuvantly treated volumes reduces acute morbidity 3D-c-IMRT nicely meets demands of concurrent chemotherapy protocols

    Intensity modulated radiotherapy for sinonasal malignancies with a focus on optic pathway preservation

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To assess if intensity-modulated radiotherapy (IMRT) can possibly lead to improved local control and lower incidence of vision impairment/blindness in comparison to non-IMRT techniques when treating sinonasal malignancies; what is the most optimal dose constraints for the optic pathway; and the impact of different IMRT strategies on optic pathway sparing in this setting.</p> <p>Methods and materials</p> <p>A literature search in the PubMed databases was conducted in July, 2012.</p> <p>Results</p> <p>Clinical studies on IMRT and 2D/3D (2 dimensional/3 dimensional) RT for sinonasal malignancies suggest improved local control and lower incidence of severe vision impairment with IMRT in comparison to non-IMRT techniques. As observed in the non-IMRT studies, blindness due to disease progression may occur despite a lack of severe toxicity possibly due to the difficulty of controlling locally very advanced disease with a dose ≤ 70 Gy. Concurrent chemotherapy’s influence on the the risk of severe optic toxicity after radiotherapy is unclear. A maximum dose of ≤ 54 Gy with conventional fractionation to the optic pathway may decrease the risk of blindness. Increased magnitude of intensity modulation through increasing the number of segments, beams, and using a combination of coplanar and non-coplanar arrangements may help increase dose conformality and optic pathway sparing when IMRT is used.</p> <p>Conclusion</p> <p>IMRT optimized with appropriate strategies may be the treatment of choice for the most optimal local control and optic pathway sparing when treating sinonasal malignancy.</p
    corecore