10 research outputs found

    Altered Gene Synchrony Suggests a Combined Hormone-Mediated Dysregulated State in Major Depression

    Get PDF
    Coordinated gene transcript levels across tissues (denoted “gene synchrony”) reflect converging influences of genetic, biochemical and environmental factors; hence they are informative of the biological state of an individual. So could brain gene synchrony also integrate the multiple factors engaged in neuropsychiatric disorders and reveal underlying pathologies? Using bootstrapped Pearson correlation for transcript levels for the same genes across distinct brain areas, we report robust gene transcript synchrony between the amygdala and cingulate cortex in the human postmortem brain of normal control subjects (n = 14; Control/Permutated data, p<0.000001). Coordinated expression was confirmed across distinct prefrontal cortex areas in a separate cohort (n = 19 subjects) and affected different gene sets, potentially reflecting regional network- and function-dependent transcriptional programs. Genewise regional transcript coordination was independent of age-related changes and array technical parameters. Robust shifts in amygdala-cingulate gene synchrony were observed in subjects with major depressive disorder (MDD, denoted here “depression”) (n = 14; MDD/Permutated data, p<0.000001), significantly affecting between 100 and 250 individual genes (10–30% false discovery rate). Biological networks and signal transduction pathways corresponding to the identified gene set suggested putative dysregulated functions for several hormone-type factors previously implicated in depression (insulin, interleukin-1, thyroid hormone, estradiol and glucocorticoids; p<0.01 for association with depression-related networks). In summary, we showed that coordinated gene expression across brain areas may represent a novel molecular probe for brain structure/function that is sensitive to disease condition, suggesting the presence of a distinct and integrated hormone-mediated corticolimbic homeostatic, although maladaptive and pathological, state in major depression

    Corticolimbic transcriptome changes are state-dependent and region-specific in a rodent model of depression and of antidepressant reversal

    No full text
    Gene microarrays may enable the elucidation of neurobiological changes underlying the pathophysiology and treatment of major depression. However, previous studies of antidepressant treatments were performed in healthy normal rather than ‘depressed’ animals. Since antidepressants are devoid of mood-changing effects in normal individuals, the clinically relevant rodent transcriptional changes could remain undetected. We investigated antidepressant-related transcriptome changes in a corticolimbic network of mood regulation in the context of the unpredictable chronic mild stress (UCMS), a naturalistic model of depression based on socio-environmental stressors. Mice subjected to a 7-week UCMS displayed a progressive coat state deterioration, reduced weight gain, and increased agonistic and emotion-related behaviors. Chronic administration of an effective (fluoxetine) or putative antidepressant (corticotropin-releasing factor-1 (CRF1) antagonist, SSR125543) reversed all physical and behavioral effects. Changes in gene expression differed among cingulate cortex (CC), amygdala (AMY) and dentate gyrus (DG) and were extensively reversed by both drugs in CC and AMY, and to a lesser extent in DG. Fluoxetine and SSR125543 also induced additional and very similar molecular profiles in UCMS-treated mice, but the effects of the same drug differed considerably between control and UCMS states. These studies established on a large-scale that the molecular impacts of antidepressants are region-specific and state-dependent, revealed common transcriptional changes downstream from different antidepressant treatments and supported CRF1 targeting as an effective therapeutic strategy. Correlations between UCMS, drug treatments, and gene expression suggest distinct AMY neuronal and oligodendrocyte molecular phenotypes as candidate systems for mood regulation and therapeutic interventions

    Dissecting the shared genetic architecture of suicide attempt, psychiatric disorders, and known risk factors.

    Get PDF
    Background: Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders

    Suicide among physicians and health-care workers: A systematic review and meta-analysis

    No full text

    Personalized medicine in psychiatry: problems and promises

    No full text
    The central theme of personalized medicine is the premise that an individual’s unique physiologic characteristics play a significant role in both disease vulnerability and in response to specific therapies. The major goals of personalized medicine are therefore to predict an individual’s susceptibility to developing an illness, achieve accurate diagnosis, and optimize the most efficient and favorable response to treatment. The goal of achieving personalized medicine in psychiatry is a laudable one, because its attainment should be associated with a marked reduction in morbidity and mortality. In this review, we summarize an illustrative selection of studies that are laying the foundation towards personalizing medicine in major depressive disorder, bipolar disorder, and schizophrenia. In addition, we present emerging applications that are likely to advance personalized medicine in psychiatry, with an emphasis on novel biomarkers and neuroimaging

    Ketamine for Treatment of Suicidal Ideation and Reduction of Risk for Suicidal Behavior

    No full text
    corecore