88 research outputs found

    Pharmacokinetic profile of a 24-hour controlled-release OROS(® )formulation of hydromorphone in the presence and absence of food

    Get PDF
    BACKGROUND: The objective of this study was to compare the pharmacokinetic profile of a novel, once-daily, controlled-release formulation of hydromorphone (OROS(® )hydromorphone) under fasting conditions with that immediately after a high-fat breakfast in healthy volunteers. The effect of the opioid antagonist naltrexone on fasting hydromorphone pharmacokinetics also was evaluated. METHODS: In an open-label, three-way, crossover study, 30 healthy volunteers were randomized to receive a single dose of 16 mg OROS(® )hydromorphone under fasting conditions, 16 mg OROS(® )hydromorphone under fed conditions, or 16 mg OROS(® )hydromorphone under fasting conditions with a naltrexone 50-mg block. Plasma samples taken pre-dose and at regular intervals up to 48 hours post-dose were assayed for hydromorphone concentrations. Analysis of variance was performed on log-transformed data; for mean ratios of 0.8 to 1.2 (20%), differences were considered minimal. Bioequivalence was reached if 90% confidence intervals (CI) of treatment mean ratios were between 80% and 125%. RESULTS: The mean geometric ratios of the fed and fasting treatment groups for maximum plasma concentration (C(max)) and area under the concentration-time curve (AUC(0-t); AUC(0-∞)) were within 20%. Confidence intervals were within 80% to 125% for AUC(0-t )and AUC(0-∞ )but were slightly higher for C(max )(105.9% and 133.3%, respectively). With naltrexone block, the hydromorphone C(max )increased by 39% and the terminal half-life decreased by 4.5 hours. There was no significant change in T(max), AUC(0-t )or AUC(0-∞). CONCLUSION: Standard bioavailability measures show minimal effect of food on the bioavailability of hydromorphone from OROS(® )hydromorphone. Naltrexone co-administration results in a slight increase in the rate of absorption but not the extent of absorption. TRIAL REGISTRATION: Clinical Trials.gov NCT0039929

    Probing the Production of Amidated Peptides following Genetic and Dietary Copper Manipulations

    Get PDF
    Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM), the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide) is converted into a reaction intermediate (hydroxyglycine-extended peptide) by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM) domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM+/−) via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM+/− mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM+/− mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides

    Differential Pharmacological Actions of Methadone and Buprenorphine in Human Embryonic Kidney 293 Cells Coexpressing Human μ-Opioid and Opioid Receptor-Like 1 Receptors

    Get PDF
    Methadone and buprenorphine are used in maintenance therapy for heroin addicts. In this study, we compared their effects on adenylate cyclase (AC) activity in human embryonic kidney (HEK) 293 cells stably overexpressing human μ-opioid receptor (MOR) and nociceptin/opioid receptor-like 1 receptor (ORL1) simultaneously. After acute exposure, methadone inhibited AC activity; however, buprenorphine induced compromised AC inhibition. When naloxone was introduced after 30 min incubation with methadone, the AC activity was enhanced. This was not observed in the case of buprenorphine. Enhancement of the AC activity was more significant when the incubation lasted for 4 h, and prolonged exposure to buprenorphine elevated the AC activity as well. The removal of methadone and buprenorphine by washing also obtained similar AC superactivation as that revealed by naloxone challenge. The study demonstrated that methadone and buprenorphine exert initially different yet eventually convergent adaptive changes of AC activity in cells coexpressing human MOR and ORL1 receptors

    I’m so tired: biological and genetic mechanisms of cancer-related fatigue

    Get PDF
    Objective The goal of this paper is to discuss cancer-related fatigue (CRF) and address issues related to the investigation into potential biological and genetic causal mechanisms. The objectives are to: (1) describe CRF as a component of quality of life (QOL); (2) address measurement issues that have slowed progress toward an understanding of mechanisms underlying this symptom; (3) review biological pathways and genetic approaches that have promise for the exploration of causal mechanisms of CRF; and (4) offer directions for future research. Methods Review, synthesis, and interpretation of the literature. Results Until recently, CRF and QOL have been understood primarily as subjective patient-reported experiences. With increased understanding of human genetics, theories and research are being expanded to incorporate biological and genetic understandings of these subjective experiences. Proposed biological and genetic mechanisms of CRF that have been examined include cytokine dysregulation, hypothalamic-pituitary-adrenal (HPA) axis dysfunction, five hydroxy tryptophan (5-HT) neurotransmitter dysregulation, circadian rhythm disruption, alterations in adenosine triphosphate (ATP) and muscle metabolism, and vagal afferent activation. Approaches to the study of genetic mechanisms have also been addressed including candidate genes, genome-wide scanning, and gene expression. Based on the review and synthesis of the literature, directions for future research are proposed. Conclusions Understanding the biological and genetic basis of CRF has the potential to contribute to a more complete understanding of the genetic determinants of QO
    corecore