92 research outputs found
Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine
Altered glutamate signaling contributes to a myriad of neural disorders, including schizophrenia. While synaptic levels are intensely studied, nonvesicular release mechanisms, including cystine–glutamate exchange, maintain high steady-state glutamate levels in the extrasynaptic space. The existence of extrasynaptic receptors, including metabotropic group II glutamate receptors (mGluR), pose nonvesicular release mechanisms as unrecognized targets capable of contributing to pathological glutamate signaling. We tested the hypothesis that activation of cystine–glutamate antiporters using the cysteine prodrug N-acetylcysteine would blunt psychotomimetic effects in the rodent phencyclidine (PCP) model of schizophrenia. First, we demonstrate that PCP elevates extracellular glutamate in the prefrontal cortex, an effect that is blocked by N-acetylcysteine pretreatment. To determine the relevance of the above finding, we assessed social interaction and found that N-acetylcysteine reverses social withdrawal produced by repeated PCP. In a separate paradigm, acute PCP resulted in working memory deficits assessed using a discrete trial t-maze task, and this effect was also reversed by N-acetylcysteine pretreatment. The capacity of N-acetylcysteine to restore working memory was blocked by infusion of the cystine–glutamate antiporter inhibitor (S)-4-carboxyphenylglycine into the prefrontal cortex or systemic administration of the group II mGluR antagonist LY341495 indicating that the effects of N-acetylcysteine requires cystine–glutamate exchange and group II mGluR activation. Finally, protein levels from postmortem tissue obtained from schizophrenic patients revealed significant changes in the level of xCT, the active subunit for cystine–glutamate exchange, in the dorsolateral prefrontal cortex. These data advance cystine–glutamate antiporters as novel targets capable of reversing the psychotomimetic effects of PCP
Structural and molecular correlates of cognitive aging in the rat
Aging is associated with cognitive decline. Herein, we studied a large cohort of old age and young adult male rats and confirmed that, as a group, old rats display poorer spatial learning and behavioral flexibility than younger adults. Surprisingly, when animals were clustered as good and bad performers, our data revealed that while in younger animals better cognitive performance was associated with longer dendritic trees and increased levels of synaptic markers in the hippocampus and prefrontal cortex, the opposite was found in the older group, in which better performance was associated with shorter dendrites and lower levels of synaptic markers. Additionally, in old, but not young individuals, worse performance correlated with increased levels of BDNF and the autophagy substrate p62, but decreased levels of the autophagy complex protein LC3. In summary, while for younger individuals "bigger is better", "smaller is better" is a more appropriate aphorism for older subjects.Portuguese Foundation for Science and Technology (FCT) with fellowships granted to: Cristina Mota (SFRH/BD/81881/2011), Susana Monteiro (SFRH/BD/69311/2010), Sofia Pereira das Neves and Sara Monteiro-Martins (PIC/IC/83213/2007); and by the European Commission within the 7th framework program, under the grant agreement: Health-F2-2010-259772 (Switchbox). In addition, this work was co-funded by the Northern Portugal Regional Operational Programme (ON.2 SR&TD Integrated Program – NORTE-07-0124-FEDER-000021), through the European Regional Development Fund (FEDER) and by national funds granted by FCT (PEst-C/SAU/LA0026/2013), and FEDER through the COMPETE (FCOMP-01-0124-FEDER-037298)
The Morphological Identity of Insect Dendrites
Dendrite morphology, a neuron's anatomical fingerprint, is a
neuroscientist's asset in unveiling organizational principles in the
brain. However, the genetic program encoding the morphological identity of a
single dendrite remains a mystery. In order to obtain a formal understanding of
dendritic branching, we studied distributions of morphological parameters in a
group of four individually identifiable neurons of the fly visual system. We
found that parameters relating to the branching topology were similar throughout
all cells. Only parameters relating to the area covered by the dendrite were
cell type specific. With these areas, artificial dendrites were grown based on
optimization principles minimizing the amount of wiring and maximizing synaptic
democracy. Although the same branching rule was used for all cells, this yielded
dendritic structures virtually indistinguishable from their real counterparts.
From these principles we derived a fully-automated model-based neuron
reconstruction procedure validating the artificial branching rule. In
conclusion, we suggest that the genetic program implementing neuronal branching
could be constant in all cells whereas the one responsible for the dendrite
spanning field should be cell specific
Prelimbic and Infralimbic Prefrontal Cortex Interact during Fast Network Oscillations
Background: The medial prefrontal cortex has been implicated in a variety of cognitive and executive processes such as decision making and working memory. The medial prefrontal cortex of rodents consists of several areas including the prelimbic and infralimbic cortex that are thought to be involved in different aspects of cognitive performance. Despite the distinct roles in cognitive behavior that have been attributed to prelimbic and infralimbic cortex, little is known about neuronal network functioning of these areas, and whether these networks show any interaction during fast network oscillations. Methodology/Principal Findings: Here we show that fast network oscillations in rat infralimbic cortex slices occur at higher frequencies and with higher power than oscillations in prelimbic cortex. The difference in oscillation frequency disappeared when prelimbic and infralimbic cortex were disconnected. Conclusions/Significance: Our data indicate that neuronal networks of prelimbic and infralimbic cortex can sustain fast network oscillations independent of each other, but suggest that neuronal networks of prelimbic and infralimbic cortex ar
Dopaminergic modulation of affective and social deficits induced by prenatal glucocorticoid exposure
Prenatal stress or exposure to elevated levels of glucocorticoids (GCs) can impair specific neurobehavioral circuits leading to alterations in emotional processes later in life. In turn, emotional deficits may interfere with the quality and degree of social interaction. Here, by using a comprehensive behavioral approach in combination with the measurement of ultrasonic vocalizations, we show that in utero GC (iuGC)-exposed animals present increased immobility in the forced swimming test, pronounced anhedonic behavior (both anticipatory and consummatory), and an impairment in social interaction at different life stages. Importantly, we also found that social behavioral expression is highly dependent on the affective status of the partner. A profound reduction in mesolimbic dopaminergic transmission was found in iuGC animals, suggesting a key role for dopamine (DA) in the etiology of the observed behavioral deficits. Confirming this idea, we present evidence that a simple pharmacological approach—acute L-3,4-dihydroxyphenylacetic acid (L-DOPA) oral administration, is able to normalize DA levels in iuGC animals, with a concomitant amelioration of several dimensions of the emotional and social behaviors. Interestingly, L-DOPA effects in control individuals were not so straightforward; suggesting that both hypo- and hyperdopaminergia are detrimental in the context of such complex behaviors.This work was supported by a grant of Institute for the Study of Affective Neuroscience (ISAN) and Janssen Neurosciences Prize. SB and AJR have Fundacao para a Ciencia e Tecnologia (FCT) fellowships (SFRH/BD/89936/2012; SFRH/BPD/33611/2009)
Mechanisms of initiation and reversal of drug-seeking behavior induced by prenatal exposure to glucocorticoids
We would like to thank the members of the Neuroscience Research Domain at ICVS for all the helpful discussions and suggestions. We are especially thankful to the animal facility caretakers, and to Drs Sara Silva, António Melo and Ana Paula Silva and Dieter Fischer for their helpStress and exposure to glucocorticoids (GC) during early life render individuals vulnerable to brain disorders by inducing structural and chemical alterations in specific neural substrates. Here we show that adult rats that had been exposed to in utero GCs (iuGC) display increased preference for opiates and ethanol, and are more responsive to the psychostimulatory actions of morphine. These animals presented prominent changes in the nucleus accumbens (NAcc), a key component of the mesolimbic reward circuitry; specifically, cell numbers and dopamine (DA) levels were significantly reduced, whereas DA receptor 2 (Drd2) mRNA expression levels were markedly upregulated in the NAcc. Interestingly, repeated morphine exposure significantly downregulated Drd2 expression in iuGC-exposed animals, in parallel with increased DNA methylation of the Drd2 gene. Administration of a therapeutic dose of L-dopa reverted the hypodopaminergic state in the NAcc of iuGC animals, normalized Drd2 expression and prevented morphine-induced hypermethylation of the Drd2 promoter. In addition, L-dopa treatment promoted dendritic and synaptic plasticity in the NAcc and, importantly, reversed drug-seeking behavior. These results reveal a new mechanism through which drug-seeking behaviors may emerge and suggest that a brief and simple pharmacological intervention can restrain these behaviors in vulnerable individuals.This work was supported by the Institute for the Study of Affective Neuroscience (ISAN). AJR, BC and MC were supported by Fundação para a Ciência e Tecnologia (FCT) fellowship
Differential Stress-Induced Neuronal Activation Patterns in Mouse Lines Selectively Bred for High, Normal or Low Anxiety
There is evidence for a disturbed perception and processing of emotional information in pathological anxiety. Using a rat model of trait anxiety generated by selective breeding, we previously revealed differences in challenge-induced neuronal activation in fear/anxiety-related brain areas between high (HAB) and low (LAB) anxiety rats. To confirm whether findings generalize to other species, we used the corresponding HAB/LAB mouse model and investigated c-Fos responses to elevated open arm exposure. Moreover, for the first time we included normal anxiety mice (NAB) for comparison. The results confirm that HAB mice show hyperanxious behavior compared to their LAB counterparts, with NAB mice displaying an intermediate anxiety phenotype. Open arm challenge revealed altered c-Fos response in prefrontal-cortical, limbic and hypothalamic areas in HAB mice as compared to LAB mice, and this was similar to the differences observed previously in the HAB/LAB rat lines. In mice, however, additional differential c-Fos response was observed in subregions of the amygdala, hypothalamus, nucleus accumbens, midbrain and pons. Most of these differences were also seen between HAB and NAB mice, indicating that it is predominately the HAB line showing altered neuronal processing. Hypothalamic hypoactivation detected in LAB versus NAB mice may be associated with their low-anxiety/high-novelty-seeking phenotype. The detection of similarly disturbed activation patterns in a key set of anxiety-related brain areas in two independent models reflecting psychopathological states of trait anxiety confirms the notion that the altered brain activation in HAB animals is indeed characteristic of enhanced (pathological) anxiety, providing information for potential targets of therapeutic intervention
- …