7 research outputs found

    Tuning main group redox chemistry through steric loading: subvalent Group 13 metal complexes of carbazolyl ligands.

    No full text
    The ability of substituted carbazol-9-yl systems to ligate in σ fashion through the amido N-donor, or to adopt alternative coordination modes through the π system of the central five-membered ring, can be tuned by systematic variation in the steric demands of substituents in the 1- and 8-positions. The differing affinities of the two modes of coordination for hard and soft metal centres can be shown to influence not only cation selectivity, but also the redox properties of the metal centre. Thus, the highly sterically sterically demanding 1,3,6,8-tetra-tert-butylcarbazolyl ligand can be used to generate the structurally characterised amido-indium(I) complex, [{(tBu(4)carb)In}(n)], (together with its isostructural thallium counterpart) in which the metal centre interacts with the central pyrrolyl ring in η(3) fashion [d(In-N)=2.679(3) Å; d(In-C)=2.819(3), 2.899(3) Å]. By contrast, the smaller 3,6-di-tert-butylcarbazolyl system is less able to restrict the metal centre from binding at the anionic nitrogen donor in the plane of the carbazolyl ligand (i.e. in σ fashion). Analogous chemistry with In(I) precursors therefore leads to disproportionation to the much harder In(II) [and In(0)], and the formation of the mixed-valence product, [In(2){In(2)(tBu(2)carb)(6)}], a homoleptic molecular [In(4)(NR(2))(6)] system. This chemistry reveals a flexibility of ligation for carbazolyl systems that contrasts markedly with that of the similarly sterically encumbered terphenyl ligand family

    Interaction of In(I) and Tl(I) cations with 2,6-diaryl pyridine ligands: cation encapsulation within a very weakly interacting N/arene host environment.

    No full text
    The interaction of 2,6-dimesitylpyridine with Tl(I) and In(I) cations has been investigated with a view to developing tractable molecular M(I) compounds which are soluble in organic media. In stark contrast to isosteric and isoelectronic terphenyl systems, complexes featuring the [(2,6-Mes(2)py)M](+) fragment feature very weak metal-ligand interactions in the solid state, as revealed by M-N distances of the order of 2.45 Å (M = In) and 2.64 Å (M = Tl). While additional weak π interactions are observed with arene solvate molecules in these systems, the related 2:1 complex [(2,6-Mes(2)py)(2)In][BAr(f)(4)] features an In(I) center wholly encapsulated by the bulky Mes(2)py donors, and even longer In-N distances [2.586(6) and 2.662(5) Å]. These contacts are about 0.5 Å greater than the sum of the respective covalent radii (2.13 Å) and provide evidence for an effectively "naked" In(I) cation stabilized to a minor extent by orbital interactions

    Modelling fundamental arene-borane contacts: spontaneous formation of a dibromoborenium cation driven by interaction between a borane Lewis acid and an arene π system.

    No full text
    Reaction of 2,6-dimesityl pyridine (L(py)) with BBr(3) leads to the spontaneous formation of the trigonal dibromoborenium cation [L(py)·BBr(2)](+)via bromide ejection. Systematic structural and computational studies, and the reactivity displayed by a closely related N-heterocyclic carbene (NHC) donor, reveal the role played by arene-borane interactions in this chemistry. [L(py)·BBr(2)](+) features a structurally characterized (albeit weak) electrostatic interaction between the borane Lewis acid and flanking arene π systems
    corecore