64 research outputs found

    Difficulties in assessing cytomegalovirus-associated gastric perforation in an HIV-infected patient

    Get PDF
    BACKGROUND: Active Cytomegalovirus (CMV) infection is a common complication in advanced symptomatic Human Immunodeficiency Virus (HIV) infection. CMV-induced intestinal perforations are hard to diagnose and may be observed throughout the gastrointestinal tract. Isolated stomach perforation is exceptional. CASE PRESENTATION: A 47-year-old man was admitted to our intensive care unit with multiorgan failure. Gastrointestinal endoscopic examination showed erythematous gastritis but normal duodenum and colon. CMV blood culture was positive. Histologic examination of a gastric biopsy showed inflammatory infiltrate and immunostaining typical intranuclear CMV inclusion bodies. Concomitant abdominal CT scan disclosed large peripancreatic hypodensities without pneumoperitoneum. The patient died despite supportive therapies and ganciclovir infusion. Postmortem examination showed a 4-cm gastric perforation adhering to the transverse colon and liver, with a thick necrotic inflammatory coating around the pancreas. The whole GI tract, except the stomach, was normal. As other causes, especially Helicobacter pylori infection could be ruled out, a causal relationship between CMV and gastric disease was assumed. CONCLUSION: CMV may be responsible for gastric perforations, with difficulties in assessing the diagnosis. Early diagnosis based on cautious endoscopy and histopathologic examination is needed to make a favorable outcome possible

    Biomechanics of Running Indicates Endothermy in Bipedal Dinosaurs

    Get PDF
    One of the great unresolved controversies in paleobiology is whether extinct dinosaurs were endothermic, ectothermic, or some combination thereof, and when endothermy first evolved in the lineage leading to birds. Although it is well established that high, sustained growth rates and, presumably, high activity levels are ancestral for dinosaurs and pterosaurs (clade Ornithodira), other independent lines of evidence for high metabolic rates, locomotor costs, or endothermy are needed. For example, some studies have suggested that, because large dinosaurs may have been homeothermic due to their size alone and could have had heat loss problems, ectothermy would be a more plausible metabolic strategy for such animals.Here we describe two new biomechanical approaches for reconstructing the metabolic rate of 14 extinct bipedal dinosauriforms during walking and running. These methods, well validated for extant animals, indicate that during walking and slow running the metabolic rate of at least the larger extinct dinosaurs exceeded the maximum aerobic capabilities of modern ectotherms, falling instead within the range of modern birds and mammals. Estimated metabolic rates for smaller dinosaurs are more ambiguous, but generally approach or exceed the ectotherm boundary.Our results support the hypothesis that endothermy was widespread in at least larger non-avian dinosaurs. It was plausibly ancestral for all dinosauriforms (perhaps Ornithodira), but this is perhaps more strongly indicated by high growth rates than by locomotor costs. The polarity of the evolution of endothermy indicates that rapid growth, insulation, erect postures, and perhaps aerobic power predated advanced “avian” lung structure and high locomotor costs
    corecore