211 research outputs found

    Sum Rules from an Extra Dimension

    Full text link
    Using the gravity side of the AdS/CFT correspondence, we investigate the analytic properties of thermal retarded Green's functions for scalars, conserved currents, the stress tensor, and massless fermions. We provide some results concerning their large and small frequency behavior and their pole structure. From these results, it is straightforward to prove the validity of various sum rules on the field theory side of the duality. We introduce a novel contraction mapping we use to study the large frequency behavior of the Green's functions.Comment: v2: 23 pages (plus appendix), revised presentation, discussion of branch cuts moved to appendix, and some minor changes; v1: 24 pages (plus appendix

    Purkinje cell expression of a mutant SCA1 allele in transgenic mice leads to disparate effects on motor behaviours followed by a progressive cerebellar dysfunction and histological abnormalities

    Get PDF
    Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurological disorder caused by the expansion of a CAG repeat encoding a polyglutamine tract. Work presented here describes the behavioral and neuropathological course seen in mutant SCA1 transgenic mice. Behavioral tests indicate that at 5 weeks of age mutant mice have an impaired performance on the rotating rod in the absence of deficits in balance and coordination. In contrast, these mutant SCA1 mice have an increased initial exploratory behavior. Thus, expression of the mutant SCA1 allele within cerebellar Purkinje cells has divergent effects on the motor behavior of juvenile animals: a compromise of rotating rod performance and a simultaneous enhancement of initial exploratory activity. With age, these animals develop incoordination with concomitant progressive Purkinje neuron dendritic and somatic atrophy but relatively little cell loss. Therefore, the eventual development of ataxia caused by the expression of a mutant SCA1 allele is not the result of cell death per se, but the result of cellular dysfunction and morphological alterations that occur before neuronal demise

    Explosive growth of facet joint interventions in the medicare population in the United States: a comparative evaluation of 1997, 2002, and 2006 data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Office of Inspector General of the Department of Health and Human Services (OIG-DHHS) issued a report which showed explosive growth and also raised questions of lack of medical necessity and/or indications for facet joint injection services in 2006.</p> <p>The purpose of the study was to determine trends of frequency and cost of facet joint interventions in managing spinal pain.</p> <p>Methods</p> <p>This analysis was performed to determine trends of frequency and cost of facet joint</p> <p>Interventions in managing spinal pain, utilizing the annual 5% national sample of the Centers for</p> <p>Medicare and Medicaid Services (CMS) for 1997, 2002, and 2006.</p> <p>Outcome measures included overall characteristics of Medicare beneficiaries receiving facet joint interventions, utilization of facet joint interventions by place of service, by specialty, reimbursement characteristics, and other variables.</p> <p>Results</p> <p>From 1997 to 2006, the number of patients receiving facet joint interventions per 100,000</p> <p>Medicare population increased 386%, facet joint visits increased 446%, and facet joint interventions increased 543%. The increases were higher in patients aged less than 65 years compared to those 65 or older with patients increasing 504% vs. 355%, visits increasing 587% vs. 404%, and services increasing 683% vs. 498%.</p> <p>Total expenditures for facet joint interventions in the Medicare population increased from over 229millionin2002toover229 million in 2002 to over 511 million in 2006, with an overall increase of 123%. In 2006, there was a 26.8-fold difference in utilization of facet joint intervention services in Florida compared to the state with the lowest utilization - Hawaii.</p> <p>There was an annual increase of 277.3% in the utilization of facet joint interventions by general physicians, whereas a 99.5% annual increase was seen for nurse practitioners (NPs) and certified registered nurse anesthetists (CRNAs) from 2002 to 2006. Further, in Florida, 47% of facet joint interventions were performed by general physicians.</p> <p>Conclusions</p> <p>The reported explosive growth of facet joint interventions in managing spinal pain in certain regions and by certain specialties may result in increased regulations and scrutiny with reduced access.</p

    Inactivation of the FLCN Tumor Suppressor Gene Induces TFE3 Transcriptional Activity by Increasing Its Nuclear Localization

    Get PDF
    Germline mutations in a tumor suppressor gene FLCN lead to development of fibrofolliculomas, lung cysts and renal cell carcinoma (RCC) in Birt-Hogg-DubΓ© syndrome. TFE3 is a member of the MiTF/TFE transcription factor family and Xp11.2 translocations found in sporadic RCC involving TFE3 result in gene fusions and overexpression of chimeric fusion proteins that retain the C-terminal DNA binding domain of TFE3. We found that GPNMB expression, which is regulated by MiTF, was greatly elevated in renal cancer cells harboring either TFE3 translocations or FLCN inactivation. Since TFE3 is implicated in RCC, we hypothesized that elevated GPNMB expression was due to increased TFE3 activity resulting from the inactivation of FLCN.TFE3 knockdown reduced GPNMB expression in renal cancer cells harboring either TFE3 translocations or FLCN inactivation. Moreover, FLCN knockdown induced GPNMB expression in FLCN-restored renal cancer cells. Conversely, wildtype FLCN suppressed GPNMB expression in FLCN-null cells. FLCN inactivation was correlated with increased TFE3 transcriptional activity accompanied by its nuclear localization as revealed by elevated GPNMB mRNA and protein expression, and predominantly nuclear immunostaining of TFE3 in renal cancer cells, mouse embryo fibroblast cells, mouse kidneys and mouse and human renal tumors. Nuclear localization of TFE3 was associated with TFE3 post-translational modifications including decreased phosphorylation.Increased TFE3 activity is a downstream event induced by FLCN inactivation and is likely to be important for renal tumor development. This study provides an important novel mechanism for induction of TFE3 activity in addition to TFE3 overexpression resulting from Xp11.2 translocations, suggesting that TFE3 may be more broadly involved in tumorigenesis

    Farnesoid X Receptor Induces Murine Scavenger Receptor Class B Type I via Intron Binding

    Get PDF
    Farnesoid X receptor (FXR) is a nuclear receptor and a key regulator of liver cholesterol and triglyceride homeostasis. Scavenger receptor class B type I (SR-BI) is critical for reverse cholesterol transport (RCT) by transporting high-density lipoprotein (HDL) into liver. FXR induces SR-BI, however, the underlying molecular mechanism of this induction is not known. The current study confirmed induction of SR-BI mRNA by activated FXR in mouse livers, a human hepatoma cell line, and primary human hepatocytes. Genome-wide FXR binding analysis in mouse livers identified 4 putative FXR response elements in the form of inverse repeat separated by one nucleotide (IR1) at the first intron and 1 IR1 at the downstream of the mouse Sr-bi gene. ChIP-qPCR analysis revealed FXR binding to only the intronic IR1s, but not the downstream one. Luciferase assays and site-directed mutagenesis further showed that 3 out of 4 IR1s were able to activate gene transcription. A 16-week high-fat diet (HFD) feeding in mice increased hepatic Sr-bi gene expression in a FXR-dependent manner. In addition, FXR bound to the 3 bona fide IR1s in vivo, which was increased following HFD feeding. Serum total and HDL cholesterol levels were increased in FXR knockout mice fed the HFD, compared to wild-type mice. In conclusion, the Sr-bi/SR-BI gene is confirmed as a FXR target gene in both mice and humans, and at least in mice, induction of Sr-bi by FXR is via binding to intronic IR1s. This study suggests that FXR may serve as a promising molecular target for increasing reverse cholesterol transport

    Burn Injury Reduces Neutrophil Directional Migration Speed in Microfluidic Devices

    Get PDF
    Thermal injury triggers a fulminant inflammatory cascade that heralds shock, end-organ failure, and ultimately sepsis and death. Emerging evidence points to a critical role for the innate immune system, and several studies had documented concurrent impairment in neutrophil chemotaxis with these post-burn inflammatory changes. While a few studies suggest that a link between neutrophil motility and patient mortality might exist, so far, cumbersome assays have prohibited exploration of the prognostic and diagnostic significance of chemotaxis after burn injury. To address this need, we developed a microfluidic device that is simple to operate and allows for precise and robust measurements of chemotaxis speed and persistence characteristics at single-cell resolution. Using this assay, we established a reference set of migration speed values for neutrophils from healthy subjects. Comparisons with samples from burn patients revealed impaired directional migration speed starting as early as 24 hours after burn injury, reaching a minimum at 72–120 hours, correlated to the size of the burn injury and potentially serving as an early indicator for concurrent infections. Further characterization of neutrophil chemotaxis using this new assay may have important diagnostic implications not only for burn patients but also for patients afflicted by other diseases that compromise neutrophil functions

    Was Wright Right? The Canonical Genetic Code is an Empirical Example of an Adaptive Peak in Nature; Deviant Genetic Codes Evolved Using Adaptive Bridges

    Get PDF
    The canonical genetic code is on a sub-optimal adaptive peak with respect to its ability to minimize errors, and is close to, but not quite, optimal. This is demonstrated by the near-total adjacency of synonymous codons, the similarity of adjacent codons, and comparisons of frequency of amino acid usage with number of codons in the code for each amino acid. As a rare empirical example of an adaptive peak in nature, it shows adaptive peaks are real, not merely theoretical. The evolution of deviant genetic codes illustrates how populations move from a lower to a higher adaptive peak. This is done by the use of β€œadaptive bridges,” neutral pathways that cross over maladaptive valleys by virtue of masking of the phenotypic expression of some maladaptive aspects in the genotype. This appears to be the general mechanism by which populations travel from one adaptive peak to another. There are multiple routes a population can follow to cross from one adaptive peak to another. These routes vary in the probability that they will be used, and this probability is determined by the number and nature of the mutations that happen along each of the routes. A modification of the depiction of adaptive landscapes showing genetic distances and probabilities of travel along their multiple possible routes would throw light on this important concept
    • …
    corecore