30 research outputs found

    Redox-controlled potassium intercalation into two polyaromatic hydrocarbon solids

    Get PDF
    Alkali metal intercalation into polyaromatic hydrocarbons (PAHs) has been studied intensely after reports of superconductivity in a number of potassium- and rubidium-intercalated materials. There are, however, no reported crystal structures to inform our understanding of the chemistry and physics because of the complex reactivity of PAHs with strong reducing agents at high temperature. Here we present the synthesis of crystalline K2Pentacene and K2Picene by a solid–solid insertion protocol that uses potassium hydride as a redox-controlled reducing agent to access the PAH dianions, and so enables the determination of their crystal structures. In both cases, the inserted cations expand the parent herringbone packings by reorienting the molecular anions to create multiple potassium sites within initially dense molecular layers, and thus interact with the PAH anion π systems. The synthetic and crystal chemistry of alkali metal intercalation into PAHs differs from that into fullerenes and graphite, in which the cation sites are pre-defined by the host structure

    Time-resolved single-crystal X-ray crystallography

    Get PDF
    In this chapter the development of time-resolved crystallography is traced from its beginnings more than 30 years ago. The importance of being able to “watch” chemical processes as they occur rather than just being limited to three-dimensional pictures of the reactant and final product is emphasised, and time-resolved crystallography provides the opportunity to bring the dimension of time into the crystallographic experiment. The technique has evolved in time with developments in technology: synchrotron radiation, cryoscopic techniques, tuneable lasers, increased computing power and vastly improved X-ray detectors. The shorter the lifetime of the species being studied, the more complex is the experiment. The chapter focusses on the results of solid-state reactions that are activated by light, since this process does not require the addition of a reagent to the crystalline material and the single-crystalline nature of the solid may be preserved. Because of this photoactivation, time-resolved crystallography is often described as “photocrystallography”. The initial photocrystallographic studies were carried out on molecular complexes that either underwent irreversible photoactivated processes where the conversion took hours or days. Structural snapshots were taken during the process. Materials that achieved a metastable state under photoactivation and the excited (metastable) state had a long enough lifetime for the data from the crystal to be collected and the structure solved. For systems with shorter lifetimes, the first time-resolved results were obtained for macromolecular structures, where pulsed lasers were used to pump up the short lifetime excited state species and their structures were probed by using synchronised X-ray pulses from a high-intensity source. Developments in molecular crystallography soon followed, initially with monochromatic X-ray radiation, and pump-probe techniques were used to establish the structures of photoactivated molecules with lifetimes in the micro- to millisecond range. For molecules with even shorter lifetimes in the sub-microsecond range, Laue diffraction methods (rather than using monochromatic radiation) were employed to speed up the data collections and reduce crystal damage. Future developments in time-resolved crystallography are likely to involve the use of XFELs to complete “single-shot” time-resolved diffraction studies that are already proving successful in the macromolecular crystallographic field.</p

    Electron Distribution and Molecular Motion in Crystalline Benzene: An Accurate Experimental Study Combining CCD X-ray Data on C₆H₆ with Multitemperature Neutron-Diffraction Results on C₆D₆

    No full text
    The electronic properties of the benzene molecule, for example its quadrupole moment and the electric field gradients (EFG's) at the H nuclei, are of fundamental importance in theoretical and experimental chemistry. With this in mind, single-crystal X-ray diffraction data on C₆H₆ were collected with a charge-coupled device detector at T≈110 K. As accurate modelling of the thermal motion in the crystal was regarded as vital, especially for the hydrogen atoms, anisotropic-displacement parameters (ADP's) for the C and H atoms in C₆H₆ were derived in a straightforward fashion from analysis of the temperature dependence of ADP's for the C and D atoms in C₆D₆ at 15 K and 123 K obtained by neutron diffraction. Agreement between C-atom ADP's derived from thermal-motion analysis of neutron data and those obtained from multipole refinement by using the X-ray data is extraordinarily good; this gives confidence in the modelling of vibrational motion for the H atoms. The molecular quadrupole moment derived from the total charge density of the molecule in the crystal is (-29.7±2.4)x10-40 C m², in excellent agreement with measurements made in the gas phase and in solution. The average deuterium nuclear quadrupole coupling constant (DQCC) derived from EFG tensors at H atoms is 182±17 kHz, also in excellent agreement with independent measurements. The strategy employed in this work may be of more general applicability for future accurate electron density studies

    Temperature dependence of the crystal structure and EPR spectrum of bis(1,3,5-trihydroxycyclohexane)copper(II) tosylate. A unified interpretation using a model of dynamic vibronic coupling

    No full text
    The crystal structure of bis(1,3,5-trihydroxycyclohexane)copper(II) tosylate is reported at temperatures of 293, 233, 188, 163, and 93 K, as are the structures of the Zn(II) and Ni(II) analogues at room temperature for comparison. The isomorphous compounds are triclinic, space group P (1) over bar, with one formula unit in the unit cell. The unit cell parameters of the Cu compound at 293 K are a = 6.456(5) Angstrom, b = 9.505(3) Angstrom, c = 12.544(3) Angstrom, alpha = 76.57(2)degrees, beta = 87.48(4)degrees, gamma = 76.65(4)degrees. The centrosymmetric ZnO6 and NiO6 octahedra are tetragonally compressed with a slight orthorhombic distortion. The Cu-2+ polyhedra exhibit similar geometries, but with considerably larger deviations from a regular octahedron. Two of the three independent Cu-O bond lengths and two of the g-values change significantly as a function of temperature. A model of dynamic vibronic coupling is presented which explains both the EPR and structural data. Vibronic wave functions associated with a Jahn-Teller potential energy surface modified by an orthorhombic lattice ''strain'' are given. The temperature dependence of the structures is calculated from the nuclear parts and that of the g-values from the electronic parts of the wave functions. The temperature dependence of the structures and g-values is also interpreted using a simpler model involving an equilibrium between two forms of the complex which differ solely in their orientation in the crystal lattice, and the results of the two approaches are compared
    corecore