701 research outputs found

    Glueball masses in the large N limit

    Full text link
    The lowest-lying glueball masses are computed in SU(NN) gauge theory on a spacetime lattice for constant value of the lattice spacing aa and for NN ranging from 3 to 8. The lattice spacing is fixed using the deconfinement temperature at temporal extension of the lattice NT=6N_T = 6. The calculation is conducted employing in each channel a variational ansatz performed on a large basis of operators that includes also torelon and (for the lightest states) scattering trial functions. This basis is constructed using an automatic algorithm that allows us to build operators of any size and shape in any irreducible representation of the cubic group. A good signal is extracted for the ground state and the first excitation in several symmetry channels. It is shown that all the observed states are well described by their large NN values, with modest O(1/N2){\cal O}(1/N^2) corrections. In addition spurious states are identified that couple to torelon and scattering operators. As a byproduct of our calculation, the critical couplings for the deconfinement phase transition for N=5 and N=7 and temporal extension of the lattice NT=6N_T=6 are determined.Comment: 1+36 pages, 22 tables, 21 figures. Typos corrected, conclusions unchanged, matches the published versio

    Deep Interactive Learning: An Efficient Labeling Approach for Deep Learning-Based Osteosarcoma Treatment Response Assessment

    Full text link
    Osteosarcoma is the most common malignant primary bone tumor. Standard treatment includes pre-operative chemotherapy followed by surgical resection. The response to treatment as measured by ratio of necrotic tumor area to overall tumor area is a known prognostic factor for overall survival. This assessment is currently done manually by pathologists by looking at glass slides under the microscope which may not be reproducible due to its subjective nature. Convolutional neural networks (CNNs) can be used for automated segmentation of viable and necrotic tumor on osteosarcoma whole slide images. One bottleneck for supervised learning is that large amounts of accurate annotations are required for training which is a time-consuming and expensive process. In this paper, we describe Deep Interactive Learning (DIaL) as an efficient labeling approach for training CNNs. After an initial labeling step is done, annotators only need to correct mislabeled regions from previous segmentation predictions to improve the CNN model until the satisfactory predictions are achieved. Our experiments show that our CNN model trained by only 7 hours of annotation using DIaL can successfully estimate ratios of necrosis within expected inter-observer variation rate for non-standardized manual surgical pathology task.Comment: Accepted at MICCAI 202

    The role of input noise in transcriptional regulation

    Get PDF
    Even under constant external conditions, the expression levels of genes fluctuate. Much emphasis has been placed on the components of this noise that are due to randomness in transcription and translation; here we analyze the role of noise associated with the inputs to transcriptional regulation, the random arrival and binding of transcription factors to their target sites along the genome. This noise sets a fundamental physical limit to the reliability of genetic control, and has clear signatures, but we show that these are easily obscured by experimental limitations and even by conventional methods for plotting the variance vs. mean expression level. We argue that simple, global models of noise dominated by transcription and translation are inconsistent with the embedding of gene expression in a network of regulatory interactions. Analysis of recent experiments on transcriptional control in the early Drosophila embryo shows that these results are quantitatively consistent with the predicted signatures of input noise, and we discuss the experiments needed to test the importance of input noise more generally.Comment: 11 pages, 5 figures minor correction

    The a-theorem and conformal symmetry breaking in holographic RG flows

    Full text link
    We study holographic models describing an RG flow between two fixed points driven by a relevant scalar operator. We show how to introduce a spurion field to restore Weyl invariance and compute the anomalous contribution to the generating functional in even dimensional theories. We find that the coefficient of the anomalous term is proportional to the difference of the conformal anomalies of the UV and IR fixed points, as expected from anomaly matching arguments in field theory. For any even dimensions the coefficient is positive as implied by the holographic a-theorem. For flows corresponding to spontaneous breaking of conformal invariance, we also compute the two-point functions of the energy-momentum tensor and the scalar operator and identify the dilaton mode. Surprisingly we find that in the simplest models with just one scalar field there is no dilaton pole in the two-point function of the scalar operator but a stronger singularity. We discuss the possible implications.Comment: 50 pages. v2: minor changes, added references, extended discussion. v3: we have clarified some of the calculations and assumptions, results unchanged. v4: published version in JHE

    Bacterial Chemotaxis in an Optical Trap

    Get PDF
    An optical trapping technique is implemented to investigate the chemotactic behavior of a marine bacterial strain Vibrio alginolyticus. The technique takes the advantage that the bacterium has only a single polar flagellum, which can rotate either in the counter-clock-wise or clock-wise direction. The two rotation states of the motor can be readily and instantaneously resolved in the optical trap, allowing the flagellar motor switching rate to be measured under different chemical stimulations. In this paper the focus will be on the bacterial response to an impulsive change of chemoattractant serine. Despite different propulsion apparati and motility patterns, cells of V. alginolyticus apparently use a similar response as Escherichia coli to regulate their chemotactic behavior. Specifically, we found that the switching rate of the bacterial motor exhibits a biphasic behavior, showing a fast initial response followed by a slow relaxation to the steady-state switching rate . The measured can be mimicked by a model that has been recently proposed for chemotaxis in E. coli. The similarity in the response to the brief chemical stimulation in these two different bacteria is striking, suggesting that the biphasic response may be evolutionarily conserved. This study also demonstrated that optical tweezers can be a useful tool for chemotaxis studies and should be applicable to other polarly flagellated bacteria

    Efficacy of a multifaceted podiatry intervention to improve balance and prevent falls in older people: study protocol for a randomised trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls in older people are a major public health problem, with at least one in three people aged over 65 years falling each year. There is increasing evidence that foot problems and inappropriate footwear increase the risk of falls, however no studies have been undertaken to determine whether modifying these risk factors decreases the risk of falling. This article describes the design of a randomised trial to evaluate the efficacy of a multifaceted podiatry intervention to reduce foot pain, improve balance, and reduce falls in older people.</p> <p>Methods</p> <p>Three hundred community-dwelling men and women aged 65 years and over with current foot pain and an increased risk of falling will be randomly allocated to a control or intervention group. The "usual cae" control group will receive routine podiatry (i.e. nail care and callus debridement). The intervention group will receive usual care plus a multifaceted podiatry intervention consisting of: (i) prefabricated insoles customised to accommodate plantar lesions; (ii) footwear advice and assistance with the purchase of new footwear if current footwear is inappropriate; (iii) a home-based exercise program to strengthen foot and ankle muscles; and (iv) a falls prevention education booklet. Primary outcome measures will be the number of fallers, number of multiple fallers and the falls rate recorded by a falls diary over a 12 month period. Secondary outcome measures assessed six months after baseline will include the Medical Outcomes Study Short Form 12 (SF-12), the Manchester Foot Pain and Disability Index, the Falls Efficacy Scale International, and a series of balance and functional tests. Data will be analysed using the intention to treat principle.</p> <p>Discussion</p> <p>This study is the first randomised trial to evaluate the efficacy of podiatry in improving balance and preventing falls. The trial has been pragmatically designed to ensure that the findings can be generalised to clinical practice. If found to be effective, the multifaceted podiatry intervention will be a unique addition to common falls prevention strategies already in use.</p> <p>Trial registration</p> <p>Australian New Zealand Clinical Trials Registry: ACTRN12608000065392</p

    Evidence for the additions of clustered interacting nodes during the evolution of protein interaction networks from network motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput screens have revealed large-scale protein interaction networks defining most cellular functions. How the proteins were added to the protein interaction network during its growth is a basic and important issue. Network motifs represent the simplest building blocks of cellular machines and are of biological significance.</p> <p>Results</p> <p>Here we study the evolution of protein interaction networks from the perspective of network motifs. We find that in current protein interaction networks, proteins of the same age class tend to form motifs and such co-origins of motif constituents are affected by their topologies and biological functions. Further, we find that the proteins within motifs whose constituents are of the same age class tend to be densely interconnected, co-evolve and share the same biological functions, and these motifs tend to be within protein complexes.</p> <p>Conclusions</p> <p>Our findings provide novel evidence for the hypothesis of the additions of clustered interacting nodes and point out network motifs, especially the motifs with the dense topology and specific function may play important roles during this process. Our results suggest functional constraints may be the underlying driving force for such additions of clustered interacting nodes.</p

    What's in a name; Genetic structure in Solanum section Petota studied using population-genetic tools

    Get PDF
    Background - The taxonomy and systematic relationships among species of Solanum section Petota are complicated and the section seems overclassified. Many of the presumed (sub)species from South America are very similar and they are able to exchange genetic material. We applied a population genetic approach to evaluate support for subgroups within this material, using AFLP data. Our approach is based on the following assumptions: (i) accessions that may exchange genetic material can be analyzed as if they are part of one gene pool, and (ii) genetic differentiation among species is expected to be higher than within species. Results - A dataset of 566 South-American accessions (encompassing 89 species and subspecies) was analyzed in two steps. First, with the program STRUCTURE 2.2 in an 'unsupervised' procedure, individual accessions were assigned to inferred clusters based on genetic similarity. The results showed that the South American members of section Petota could be arranged in 16 clusters of various size and composition. Next, the accessions within the clusters were grouped by maximizing the partitioning of genetic diversity among subgroups (i.e., maximizing Fst values) for all available individuals of the accessions (2767 genotypes). This two-step approach produced an optimal partitioning into 44 groups. Some of the species clustered as genetically distinct groups, either on their own, or combined with one or more other species. However, accessions of other species were distributed over more than one cluster, and did not form genetically distinct units. Conclusions - We could not find any support for 43 species (almost half of our dataset). For 28 species some level of support could be found varying from good to weak. For 18 species no conclusions could be drawn as the number of accessions included in our dataset was too low. These molecular data should be combined with data from morphological surveys, with geographical distribution data, and with information from crossing experiments to identify natural units at the species level. However, the data do indicate which taxa or combinations of taxa are clearly supported by a distinct set of molecular marker data, leaving other taxa unsupported. Therefore, the approach taken provides a general method to evaluate the taxonomic system in any species complex for which molecular data are available
    corecore